gomoku / LightZero /lzero /worker /muzero_collector.py
zjowowen's picture
init space
079c32c
raw
history blame
37.5 kB
import time
from collections import deque, namedtuple
from typing import Optional, Any, List
import numpy as np
import torch
from ding.envs import BaseEnvManager
from ding.torch_utils import to_ndarray
from ding.utils import build_logger, EasyTimer, SERIAL_COLLECTOR_REGISTRY, one_time_warning, get_rank, get_world_size, \
broadcast_object_list, allreduce_data
from ding.worker.collector.base_serial_collector import ISerialCollector
from torch.nn import L1Loss
from lzero.mcts.buffer.game_segment import GameSegment
from lzero.mcts.utils import prepare_observation
@SERIAL_COLLECTOR_REGISTRY.register('episode_muzero')
class MuZeroCollector(ISerialCollector):
"""
Overview:
The Collector for MCTS+RL algorithms, including MuZero, EfficientZero, Sampled EfficientZero, Gumbel MuZero.
Interfaces:
__init__, reset, reset_env, reset_policy, _reset_stat, envstep, __del__, _compute_priorities, pad_and_save_last_trajectory, collect, _output_log, close
Property:
envstep
"""
# TO be compatible with ISerialCollector
config = dict()
def __init__(
self,
collect_print_freq: int = 100,
env: BaseEnvManager = None,
policy: namedtuple = None,
tb_logger: 'SummaryWriter' = None, # noqa
exp_name: Optional[str] = 'default_experiment',
instance_name: Optional[str] = 'collector',
policy_config: 'policy_config' = None, # noqa
) -> None:
"""
Overview:
Init the collector according to input arguments.
Arguments:
- collect_print_freq (:obj:`int`): collect_print_frequency in terms of training_steps.
- env (:obj:`BaseEnvManager`): the subclass of vectorized env_manager(BaseEnvManager)
- policy (:obj:`namedtuple`): the api namedtuple of collect_mode policy
- tb_logger (:obj:`SummaryWriter`): tensorboard handle
- instance_name (:obj:`Optional[str]`): Name of this instance.
- exp_name (:obj:`str`): Experiment name, which is used to indicate output directory.
- policy_config: Config of game.
"""
self._exp_name = exp_name
self._instance_name = instance_name
self._collect_print_freq = collect_print_freq
self._timer = EasyTimer()
self._end_flag = False
self._rank = get_rank()
self._world_size = get_world_size()
if self._rank == 0:
if tb_logger is not None:
self._logger, _ = build_logger(
path='./{}/log/{}'.format(self._exp_name, self._instance_name),
name=self._instance_name,
need_tb=False
)
self._tb_logger = tb_logger
else:
self._logger, self._tb_logger = build_logger(
path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name
)
else:
self._logger, _ = build_logger(
path='./{}/log/{}'.format(self._exp_name, self._instance_name), name=self._instance_name, need_tb=False
)
self._tb_logger = None
self.policy_config = policy_config
self.reset(policy, env)
def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None:
"""
Overview:
Reset the environment.
If _env is None, reset the old environment.
If _env is not None, replace the old environment in the collector with the new passed \
in environment and launch.
Arguments:
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
env_manager(BaseEnvManager)
"""
if _env is not None:
self._env = _env
self._env.launch()
self._env_num = self._env.env_num
else:
self._env.reset()
def reset_policy(self, _policy: Optional[namedtuple] = None) -> None:
"""
Overview:
Reset the policy.
If _policy is None, reset the old policy.
If _policy is not None, replace the old policy in the collector with the new passed in policy.
Arguments:
- policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy
"""
assert hasattr(self, '_env'), "please set env first"
if _policy is not None:
self._policy = _policy
self._default_n_episode = _policy.get_attribute('cfg').get('n_episode', None)
self._logger.debug(
'Set default n_episode mode(n_episode({}), env_num({}))'.format(self._default_n_episode, self._env_num)
)
self._policy.reset()
def reset(self, _policy: Optional[namedtuple] = None, _env: Optional[BaseEnvManager] = None) -> None:
"""
Overview:
Reset the environment and policy.
If _env is None, reset the old environment.
If _env is not None, replace the old environment in the collector with the new passed \
in environment and launch.
If _policy is None, reset the old policy.
If _policy is not None, replace the old policy in the collector with the new passed in policy.
Arguments:
- policy (:obj:`Optional[namedtuple]`): the api namedtuple of collect_mode policy
- env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
env_manager(BaseEnvManager)
"""
if _env is not None:
self.reset_env(_env)
if _policy is not None:
self.reset_policy(_policy)
self._env_info = {env_id: {'time': 0., 'step': 0} for env_id in range(self._env_num)}
self._episode_info = []
self._total_envstep_count = 0
self._total_episode_count = 0
self._total_duration = 0
self._last_train_iter = 0
self._end_flag = False
# A game_segment_pool implementation based on the deque structure.
self.game_segment_pool = deque(maxlen=int(1e6))
self.unroll_plus_td_steps = self.policy_config.num_unroll_steps + self.policy_config.td_steps
def _reset_stat(self, env_id: int) -> None:
"""
Overview:
Reset the collector's state. Including reset the traj_buffer, obs_pool, policy_output_pool\
and env_info. Reset these states according to env_id. You can refer to base_serial_collector\
to get more messages.
Arguments:
- env_id (:obj:`int`): the id where we need to reset the collector's state
"""
self._env_info[env_id] = {'time': 0., 'step': 0}
@property
def envstep(self) -> int:
"""
Overview:
Print the total envstep count.
Return:
- envstep (:obj:`int`): the total envstep count
"""
return self._total_envstep_count
def close(self) -> None:
"""
Overview:
Close the collector. If end_flag is False, close the environment, flush the tb_logger\
and close the tb_logger.
"""
if self._end_flag:
return
self._end_flag = True
self._env.close()
if self._tb_logger:
self._tb_logger.flush()
self._tb_logger.close()
def __del__(self) -> None:
"""
Overview:
Execute the close command and close the collector. __del__ is automatically called to \
destroy the collector instance when the collector finishes its work
"""
self.close()
# ==============================================================
# MCTS+RL related core code
# ==============================================================
def _compute_priorities(self, i, pred_values_lst, search_values_lst):
"""
Overview:
obtain the priorities at index i.
Arguments:
- i: index.
- pred_values_lst: The list of value being predicted.
- search_values_lst: The list of value obtained through search.
"""
if self.policy_config.use_priority:
# Calculate priorities. The priorities are the L1 losses between the predicted
# values and the search values. We use 'none' as the reduction parameter, which
# means the loss is calculated for each element individually, instead of being summed or averaged.
# A small constant (1e-6) is added to the results to avoid zero priorities. This
# is done because zero priorities could potentially cause issues in some scenarios.
pred_values = torch.from_numpy(np.array(pred_values_lst[i])).to(self.policy_config.device).float().view(-1)
search_values = torch.from_numpy(np.array(search_values_lst[i])).to(self.policy_config.device
).float().view(-1)
priorities = L1Loss(reduction='none'
)(pred_values,
search_values).detach().cpu().numpy() + 1e-6
else:
# priorities is None -> use the max priority for all newly collected data
priorities = None
return priorities
def pad_and_save_last_trajectory(self, i, last_game_segments, last_game_priorities, game_segments, done) -> None:
"""
Overview:
put the last game segment into the pool if the current game is finished
Arguments:
- last_game_segments (:obj:`list`): list of the last game segments
- last_game_priorities (:obj:`list`): list of the last game priorities
- game_segments (:obj:`list`): list of the current game segments
Note:
(last_game_segments[i].obs_segment[-4:][j] == game_segments[i].obs_segment[:4][j]).all() is True
"""
# pad over last segment trajectory
beg_index = self.policy_config.model.frame_stack_num
end_index = beg_index + self.policy_config.num_unroll_steps
# the start <frame_stack_num> obs is init zero obs, so we take the [<frame_stack_num> : <frame_stack_num>+<num_unroll_steps>] obs as the pad obs
# e.g. the start 4 obs is init zero obs, the num_unroll_steps is 5, so we take the [4:9] obs as the pad obs
pad_obs_lst = game_segments[i].obs_segment[beg_index:end_index]
pad_child_visits_lst = game_segments[i].child_visit_segment[:self.policy_config.num_unroll_steps]
# EfficientZero original repo bug:
# pad_child_visits_lst = game_segments[i].child_visit_segment[beg_index:end_index]
beg_index = 0
# self.unroll_plus_td_steps = self.policy_config.num_unroll_steps + self.policy_config.td_steps
end_index = beg_index + self.unroll_plus_td_steps - 1
pad_reward_lst = game_segments[i].reward_segment[beg_index:end_index]
if self.policy_config.use_ture_chance_label_in_chance_encoder:
chance_lst = game_segments[i].chance_segment[beg_index:end_index]
beg_index = 0
end_index = beg_index + self.unroll_plus_td_steps
pad_root_values_lst = game_segments[i].root_value_segment[beg_index:end_index]
if self.policy_config.gumbel_algo:
pad_improved_policy_prob = game_segments[i].improved_policy_probs[beg_index:end_index]
# pad over and save
if self.policy_config.gumbel_algo:
last_game_segments[i].pad_over(pad_obs_lst, pad_reward_lst, pad_root_values_lst, pad_child_visits_lst, next_segment_improved_policy = pad_improved_policy_prob)
else:
if self.policy_config.use_ture_chance_label_in_chance_encoder:
last_game_segments[i].pad_over(pad_obs_lst, pad_reward_lst, pad_root_values_lst, pad_child_visits_lst, next_chances = chance_lst)
else:
last_game_segments[i].pad_over(pad_obs_lst, pad_reward_lst, pad_root_values_lst, pad_child_visits_lst)
"""
Note:
game_segment element shape:
obs: game_segment_length + stack + num_unroll_steps, 20+4 +5
rew: game_segment_length + stack + num_unroll_steps + td_steps -1 20 +5+3-1
action: game_segment_length -> 20
root_values: game_segment_length + num_unroll_steps + td_steps -> 20 +5+3
child_visits: game_segment_length + num_unroll_steps -> 20 +5
to_play: game_segment_length -> 20
action_mask: game_segment_length -> 20
"""
last_game_segments[i].game_segment_to_array()
# put the game segment into the pool
self.game_segment_pool.append((last_game_segments[i], last_game_priorities[i], done[i]))
# reset last game_segments
last_game_segments[i] = None
last_game_priorities[i] = None
return None
def collect(self,
n_episode: Optional[int] = None,
train_iter: int = 0,
policy_kwargs: Optional[dict] = None) -> List[Any]:
"""
Overview:
Collect `n_episode` data with policy_kwargs, which is already trained `train_iter` iterations.
Arguments:
- n_episode (:obj:`int`): the number of collecting data episode.
- train_iter (:obj:`int`): the number of training iteration.
- policy_kwargs (:obj:`dict`): the keyword args for policy forward.
Returns:
- return_data (:obj:`List`): A list containing collected game_segments
"""
if n_episode is None:
if self._default_n_episode is None:
raise RuntimeError("Please specify collect n_episode")
else:
n_episode = self._default_n_episode
assert n_episode >= self._env_num, "Please make sure n_episode >= env_num{}/{}".format(n_episode, self._env_num)
if policy_kwargs is None:
policy_kwargs = {}
temperature = policy_kwargs['temperature']
epsilon = policy_kwargs['epsilon']
collected_episode = 0
collected_step = 0
env_nums = self._env_num
# initializations
init_obs = self._env.ready_obs
retry_waiting_time = 0.001
while len(init_obs.keys()) != self._env_num:
# In order to be compatible with subprocess env_manager, in which sometimes self._env_num is not equal to
# len(self._env.ready_obs), especially in tictactoe env.
self._logger.info('The current init_obs.keys() is {}'.format(init_obs.keys()))
self._logger.info('Before sleeping, the _env_states is {}'.format(self._env._env_states))
time.sleep(retry_waiting_time)
self._logger.info('=' * 10 + 'Wait for all environments (subprocess) to finish resetting.' + '=' * 10)
self._logger.info(
'After sleeping {}s, the current _env_states is {}'.format(retry_waiting_time, self._env._env_states)
)
init_obs = self._env.ready_obs
action_mask_dict = {i: to_ndarray(init_obs[i]['action_mask']) for i in range(env_nums)}
to_play_dict = {i: to_ndarray(init_obs[i]['to_play']) for i in range(env_nums)}
if self.policy_config.use_ture_chance_label_in_chance_encoder:
chance_dict = {i: to_ndarray(init_obs[i]['chance']) for i in range(env_nums)}
game_segments = [
GameSegment(
self._env.action_space,
game_segment_length=self.policy_config.game_segment_length,
config=self.policy_config
) for _ in range(env_nums)
]
# stacked observation windows in reset stage for init game_segments
observation_window_stack = [[] for _ in range(env_nums)]
for env_id in range(env_nums):
observation_window_stack[env_id] = deque(
[to_ndarray(init_obs[env_id]['observation']) for _ in range(self.policy_config.model.frame_stack_num)],
maxlen=self.policy_config.model.frame_stack_num
)
game_segments[env_id].reset(observation_window_stack[env_id])
dones = np.array([False for _ in range(env_nums)])
last_game_segments = [None for _ in range(env_nums)]
last_game_priorities = [None for _ in range(env_nums)]
# for priorities in self-play
search_values_lst = [[] for _ in range(env_nums)]
pred_values_lst = [[] for _ in range(env_nums)]
if self.policy_config.gumbel_algo:
improved_policy_lst = [[] for _ in range(env_nums)]
# some logs
eps_steps_lst, visit_entropies_lst = np.zeros(env_nums), np.zeros(env_nums)
if self.policy_config.gumbel_algo:
completed_value_lst = np.zeros(env_nums)
self_play_moves = 0.
self_play_episodes = 0.
self_play_moves_max = 0
self_play_visit_entropy = []
total_transitions = 0
ready_env_id = set()
remain_episode = n_episode
while True:
with self._timer:
# Get current ready env obs.
obs = self._env.ready_obs
new_available_env_id = set(obs.keys()).difference(ready_env_id)
ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode]))
remain_episode -= min(len(new_available_env_id), remain_episode)
stack_obs = {env_id: game_segments[env_id].get_obs() for env_id in ready_env_id}
stack_obs = list(stack_obs.values())
action_mask_dict = {env_id: action_mask_dict[env_id] for env_id in ready_env_id}
to_play_dict = {env_id: to_play_dict[env_id] for env_id in ready_env_id}
action_mask = [action_mask_dict[env_id] for env_id in ready_env_id]
to_play = [to_play_dict[env_id] for env_id in ready_env_id]
if self.policy_config.use_ture_chance_label_in_chance_encoder:
chance_dict = {env_id: chance_dict[env_id] for env_id in ready_env_id}
chance = [chance_dict[env_id] for env_id in ready_env_id]
stack_obs = to_ndarray(stack_obs)
stack_obs = prepare_observation(stack_obs, self.policy_config.model.model_type)
stack_obs = torch.from_numpy(stack_obs).to(self.policy_config.device).float()
# ==============================================================
# policy forward
# ==============================================================
policy_output = self._policy.forward(stack_obs, action_mask, temperature, to_play, epsilon)
actions_no_env_id = {k: v['action'] for k, v in policy_output.items()}
distributions_dict_no_env_id = {k: v['visit_count_distributions'] for k, v in policy_output.items()}
if self.policy_config.sampled_algo:
root_sampled_actions_dict_no_env_id = {
k: v['root_sampled_actions']
for k, v in policy_output.items()
}
value_dict_no_env_id = {k: v['searched_value'] for k, v in policy_output.items()}
pred_value_dict_no_env_id = {k: v['predicted_value'] for k, v in policy_output.items()}
visit_entropy_dict_no_env_id = {
k: v['visit_count_distribution_entropy']
for k, v in policy_output.items()
}
if self.policy_config.gumbel_algo:
improved_policy_dict_no_env_id = {k: v['improved_policy_probs'] for k, v in policy_output.items()}
completed_value_no_env_id = {
k: v['roots_completed_value']
for k, v in policy_output.items()
}
# TODO(pu): subprocess
actions = {}
distributions_dict = {}
if self.policy_config.sampled_algo:
root_sampled_actions_dict = {}
value_dict = {}
pred_value_dict = {}
visit_entropy_dict = {}
if self.policy_config.gumbel_algo:
improved_policy_dict = {}
completed_value_dict = {}
for index, env_id in enumerate(ready_env_id):
actions[env_id] = actions_no_env_id.pop(index)
distributions_dict[env_id] = distributions_dict_no_env_id.pop(index)
if self.policy_config.sampled_algo:
root_sampled_actions_dict[env_id] = root_sampled_actions_dict_no_env_id.pop(index)
value_dict[env_id] = value_dict_no_env_id.pop(index)
pred_value_dict[env_id] = pred_value_dict_no_env_id.pop(index)
visit_entropy_dict[env_id] = visit_entropy_dict_no_env_id.pop(index)
if self.policy_config.gumbel_algo:
improved_policy_dict[env_id] = improved_policy_dict_no_env_id.pop(index)
completed_value_dict[env_id] = completed_value_no_env_id.pop(index)
# ==============================================================
# Interact with env.
# ==============================================================
timesteps = self._env.step(actions)
interaction_duration = self._timer.value / len(timesteps)
for env_id, timestep in timesteps.items():
with self._timer:
if timestep.info.get('abnormal', False):
# If there is an abnormal timestep, reset all the related variables(including this env).
# suppose there is no reset param, just reset this env
self._env.reset({env_id: None})
self._policy.reset([env_id])
self._reset_stat(env_id)
self._logger.info('Env{} returns a abnormal step, its info is {}'.format(env_id, timestep.info))
continue
obs, reward, done, info = timestep.obs, timestep.reward, timestep.done, timestep.info
if self.policy_config.sampled_algo:
game_segments[env_id].store_search_stats(
distributions_dict[env_id], value_dict[env_id], root_sampled_actions_dict[env_id]
)
elif self.policy_config.gumbel_algo:
game_segments[env_id].store_search_stats(distributions_dict[env_id], value_dict[env_id], improved_policy = improved_policy_dict[env_id])
else:
game_segments[env_id].store_search_stats(distributions_dict[env_id], value_dict[env_id])
# append a transition tuple, including a_t, o_{t+1}, r_{t}, action_mask_{t}, to_play_{t}
# in ``game_segments[env_id].init``, we have append o_{t} in ``self.obs_segment``
if self.policy_config.use_ture_chance_label_in_chance_encoder:
game_segments[env_id].append(
actions[env_id], to_ndarray(obs['observation']), reward, action_mask_dict[env_id],
to_play_dict[env_id], chance_dict[env_id]
)
else:
game_segments[env_id].append(
actions[env_id], to_ndarray(obs['observation']), reward, action_mask_dict[env_id],
to_play_dict[env_id]
)
# NOTE: the position of code snippet is very important.
# the obs['action_mask'] and obs['to_play'] are corresponding to the next action
action_mask_dict[env_id] = to_ndarray(obs['action_mask'])
to_play_dict[env_id] = to_ndarray(obs['to_play'])
if self.policy_config.use_ture_chance_label_in_chance_encoder:
chance_dict[env_id] = to_ndarray(obs['chance'])
if self.policy_config.ignore_done:
dones[env_id] = False
else:
dones[env_id] = done
visit_entropies_lst[env_id] += visit_entropy_dict[env_id]
if self.policy_config.gumbel_algo:
completed_value_lst[env_id] += np.mean(np.array(completed_value_dict[env_id]))
eps_steps_lst[env_id] += 1
total_transitions += 1
if self.policy_config.use_priority:
pred_values_lst[env_id].append(pred_value_dict[env_id])
search_values_lst[env_id].append(value_dict[env_id])
if self.policy_config.gumbel_algo:
improved_policy_lst[env_id].append(improved_policy_dict[env_id])
# append the newest obs
observation_window_stack[env_id].append(to_ndarray(obs['observation']))
# ==============================================================
# we will save a game segment if it is the end of the game or the next game segment is finished.
# ==============================================================
# if game segment is full, we will save the last game segment
if game_segments[env_id].is_full():
# pad over last segment trajectory
if last_game_segments[env_id] is not None:
# TODO(pu): return the one game segment
self.pad_and_save_last_trajectory(
env_id, last_game_segments, last_game_priorities, game_segments, dones
)
# calculate priority
priorities = self._compute_priorities(env_id, pred_values_lst, search_values_lst)
pred_values_lst[env_id] = []
search_values_lst[env_id] = []
if self.policy_config.gumbel_algo:
improved_policy_lst[env_id] = []
# the current game_segments become last_game_segment
last_game_segments[env_id] = game_segments[env_id]
last_game_priorities[env_id] = priorities
# create new GameSegment
game_segments[env_id] = GameSegment(
self._env.action_space,
game_segment_length=self.policy_config.game_segment_length,
config=self.policy_config
)
game_segments[env_id].reset(observation_window_stack[env_id])
self._env_info[env_id]['step'] += 1
collected_step += 1
self._env_info[env_id]['time'] += self._timer.value + interaction_duration
if timestep.done:
self._total_episode_count += 1
reward = timestep.info['eval_episode_return']
info = {
'reward': reward,
'time': self._env_info[env_id]['time'],
'step': self._env_info[env_id]['step'],
'visit_entropy': visit_entropies_lst[env_id] / eps_steps_lst[env_id],
}
if self.policy_config.gumbel_algo:
info['completed_value'] = completed_value_lst[env_id] / eps_steps_lst[env_id]
collected_episode += 1
self._episode_info.append(info)
# ==============================================================
# if it is the end of the game, we will save the game segment
# ==============================================================
# NOTE: put the penultimate game segment in one episode into the trajectory_pool
# pad over 2th last game_segment using the last game_segment
if last_game_segments[env_id] is not None:
self.pad_and_save_last_trajectory(
env_id, last_game_segments, last_game_priorities, game_segments, dones
)
# store current segment trajectory
priorities = self._compute_priorities(env_id, pred_values_lst, search_values_lst)
# NOTE: put the last game segment in one episode into the trajectory_pool
game_segments[env_id].game_segment_to_array()
# assert len(game_segments[env_id]) == len(priorities)
# NOTE: save the last game segment in one episode into the trajectory_pool if it's not null
if len(game_segments[env_id].reward_segment) != 0:
self.game_segment_pool.append((game_segments[env_id], priorities, dones[env_id]))
# print(game_segments[env_id].reward_segment)
# reset the finished env and init game_segments
if n_episode > self._env_num:
# Get current ready env obs.
init_obs = self._env.ready_obs
retry_waiting_time = 0.001
while len(init_obs.keys()) != self._env_num:
# In order to be compatible with subprocess env_manager, in which sometimes self._env_num is not equal to
# len(self._env.ready_obs), especially in tictactoe env.
self._logger.info('The current init_obs.keys() is {}'.format(init_obs.keys()))
self._logger.info('Before sleeping, the _env_states is {}'.format(self._env._env_states))
time.sleep(retry_waiting_time)
self._logger.info(
'=' * 10 + 'Wait for all environments (subprocess) to finish resetting.' + '=' * 10
)
self._logger.info(
'After sleeping {}s, the current _env_states is {}'.format(
retry_waiting_time, self._env._env_states
)
)
init_obs = self._env.ready_obs
new_available_env_id = set(init_obs.keys()).difference(ready_env_id)
ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode]))
remain_episode -= min(len(new_available_env_id), remain_episode)
action_mask_dict[env_id] = to_ndarray(init_obs[env_id]['action_mask'])
to_play_dict[env_id] = to_ndarray(init_obs[env_id]['to_play'])
if self.policy_config.use_ture_chance_label_in_chance_encoder:
chance_dict[env_id] = to_ndarray(init_obs[env_id]['chance'])
game_segments[env_id] = GameSegment(
self._env.action_space,
game_segment_length=self.policy_config.game_segment_length,
config=self.policy_config
)
observation_window_stack[env_id] = deque(
[init_obs[env_id]['observation'] for _ in range(self.policy_config.model.frame_stack_num)],
maxlen=self.policy_config.model.frame_stack_num
)
game_segments[env_id].reset(observation_window_stack[env_id])
last_game_segments[env_id] = None
last_game_priorities[env_id] = None
# log
self_play_moves_max = max(self_play_moves_max, eps_steps_lst[env_id])
self_play_visit_entropy.append(visit_entropies_lst[env_id] / eps_steps_lst[env_id])
self_play_moves += eps_steps_lst[env_id]
self_play_episodes += 1
pred_values_lst[env_id] = []
search_values_lst[env_id] = []
eps_steps_lst[env_id] = 0
visit_entropies_lst[env_id] = 0
# Env reset is done by env_manager automatically
self._policy.reset([env_id])
self._reset_stat(env_id)
# TODO(pu): subprocess mode, when n_episode > self._env_num, occasionally the ready_env_id=()
# and the stack_obs is np.array(None, dtype=object)
ready_env_id.remove(env_id)
if collected_episode >= n_episode:
# [data, meta_data]
return_data = [self.game_segment_pool[i][0] for i in range(len(self.game_segment_pool))], [
{
'priorities': self.game_segment_pool[i][1],
'done': self.game_segment_pool[i][2],
'unroll_plus_td_steps': self.unroll_plus_td_steps
} for i in range(len(self.game_segment_pool))
]
self.game_segment_pool.clear()
# for i in range(len(self.game_segment_pool)):
# print(self.game_segment_pool[i][0].obs_segment.__len__())
# print(self.game_segment_pool[i][0].reward_segment)
# for i in range(len(return_data[0])):
# print(return_data[0][i].reward_segment)
break
collected_duration = sum([d['time'] for d in self._episode_info])
# reduce data when enables DDP
if self._world_size > 1:
collected_step = allreduce_data(collected_step, 'sum')
collected_episode = allreduce_data(collected_episode, 'sum')
collected_duration = allreduce_data(collected_duration, 'sum')
self._total_envstep_count += collected_step
self._total_episode_count += collected_episode
self._total_duration += collected_duration
# log
self._output_log(train_iter)
return return_data
def _output_log(self, train_iter: int) -> None:
"""
Overview:
Print the output log information. You can refer to Docs/Best Practice/How to understand\
training generated folders/Serial mode/log/collector for more details.
Arguments:
- train_iter (:obj:`int`): the number of training iteration.
"""
if self._rank != 0:
return
if (train_iter - self._last_train_iter) >= self._collect_print_freq and len(self._episode_info) > 0:
self._last_train_iter = train_iter
episode_count = len(self._episode_info)
envstep_count = sum([d['step'] for d in self._episode_info])
duration = sum([d['time'] for d in self._episode_info])
episode_reward = [d['reward'] for d in self._episode_info]
visit_entropy = [d['visit_entropy'] for d in self._episode_info]
if self.policy_config.gumbel_algo:
completed_value = [d['completed_value'] for d in self._episode_info]
self._total_duration += duration
info = {
'episode_count': episode_count,
'envstep_count': envstep_count,
'avg_envstep_per_episode': envstep_count / episode_count,
'avg_envstep_per_sec': envstep_count / duration,
'avg_episode_per_sec': episode_count / duration,
'collect_time': duration,
'reward_mean': np.mean(episode_reward),
'reward_std': np.std(episode_reward),
'reward_max': np.max(episode_reward),
'reward_min': np.min(episode_reward),
'total_envstep_count': self._total_envstep_count,
'total_episode_count': self._total_episode_count,
'total_duration': self._total_duration,
'visit_entropy': np.mean(visit_entropy),
# 'each_reward': episode_reward,
}
if self.policy_config.gumbel_algo:
info['completed_value'] = np.mean(completed_value)
self._episode_info.clear()
self._logger.info("collect end:\n{}".format('\n'.join(['{}: {}'.format(k, v) for k, v in info.items()])))
for k, v in info.items():
if k in ['each_reward']:
continue
self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter)
if k in ['total_envstep_count']:
continue
self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, self._total_envstep_count)