|
import copy |
|
import os |
|
from datetime import datetime |
|
from typing import List, Dict |
|
|
|
import gymnasium as gym |
|
import numpy as np |
|
from ding.envs import BaseEnvTimestep |
|
from ding.envs.common import affine_transform |
|
from ding.torch_utils import to_ndarray |
|
from ding.utils import ENV_REGISTRY |
|
from easydict import EasyDict |
|
|
|
from zoo.classic_control.cartpole.envs.cartpole_lightzero_env import CartPoleEnv |
|
|
|
|
|
@ENV_REGISTRY.register('bipedalwalker') |
|
class BipedalWalkerEnv(CartPoleEnv): |
|
""" |
|
Overview: |
|
The BipedalWalker Environment class for LightZero algo.. This class is a wrapper of the gym BipedalWalker environment, with additional |
|
functionalities like replay saving and seed setting. The class is registered in ENV_REGISTRY with the key 'bipedalwalker'. |
|
""" |
|
|
|
config = dict( |
|
|
|
env_name="BipedalWalker-v3", |
|
|
|
env_type='normal', |
|
|
|
save_replay_gif=False, |
|
|
|
replay_path_gif=None, |
|
|
|
|
|
replay_path=None, |
|
|
|
act_scale=True, |
|
|
|
rew_clip=True, |
|
|
|
collect_max_episode_steps=int(1.08e5), |
|
|
|
eval_max_episode_steps=int(1.08e5), |
|
) |
|
|
|
@classmethod |
|
def default_config(cls: type) -> EasyDict: |
|
""" |
|
Overview: |
|
Return the default configuration of the class. |
|
Returns: |
|
- cfg (:obj:`EasyDict`): Default configuration dict. |
|
""" |
|
cfg = EasyDict(copy.deepcopy(cls.config)) |
|
cfg.cfg_type = cls.__name__ + 'Dict' |
|
return cfg |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
""" |
|
Overview: |
|
Initialize the BipedalWalker environment. |
|
Arguments: |
|
- cfg (:obj:`dict`): Configuration dict. The dict should include keys like 'env_name', 'replay_path', etc. |
|
""" |
|
self._cfg = cfg |
|
self._init_flag = False |
|
self._env_name = cfg.env_name |
|
self._act_scale = cfg.act_scale |
|
self._rew_clip = cfg.rew_clip |
|
self._replay_path = cfg.replay_path |
|
self._replay_path_gif = cfg.replay_path_gif |
|
self._save_replay_gif = cfg.save_replay_gif |
|
self._save_replay_count = 0 |
|
|
|
def reset(self) -> Dict[str, np.ndarray]: |
|
""" |
|
Overview: |
|
Reset the environment and return the initial observation. |
|
Returns: |
|
- obs (:obj:`np.ndarray`): The initial observation after resetting. |
|
""" |
|
if not self._init_flag: |
|
assert self._cfg.env_type in ['normal', 'hardcore'], "env_type must be in ['normal', 'hardcore']" |
|
if self._cfg.env_type == 'normal': |
|
self._env = gym.make('BipedalWalker-v3', render_mode="rgb_array") |
|
elif self._cfg.env_type == 'hardcore': |
|
self._env = gym.make('BipedalWalker-v3', hardcore=True, render_mode="rgb_array") |
|
self._observation_space = self._env.observation_space |
|
self._action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32 |
|
) |
|
self._init_flag = True |
|
if self._replay_path is not None: |
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") |
|
video_name = f'{self._env.spec.id}-video-{timestamp}' |
|
self._env = gym.wrappers.RecordVideo( |
|
self._env, |
|
video_folder=self._replay_path, |
|
episode_trigger=lambda episode_id: True, |
|
name_prefix=video_name |
|
) |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._seed = self._seed + np_seed |
|
obs, _ = self._env.reset(seed=self._seed) |
|
elif hasattr(self, '_seed'): |
|
obs, _ = self._env.reset(seed=self._seed) |
|
else: |
|
obs, _ = self._env.reset() |
|
obs = to_ndarray(obs).astype(np.float32) |
|
self._eval_episode_return = 0 |
|
if self._save_replay_gif: |
|
self._frames = [] |
|
|
|
action_mask = None |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
return obs |
|
|
|
def step(self, action: np.ndarray) -> BaseEnvTimestep: |
|
""" |
|
Overview: |
|
Take a step in the environment with the given action. |
|
Arguments: |
|
- action (:obj:`np.ndarray`): The action to be taken. |
|
Returns: |
|
- timestep (:obj:`BaseEnvTimestep`): The timestep information including observation, reward, done flag, and info. |
|
""" |
|
assert isinstance(action, np.ndarray), type(action) |
|
if action.shape == (1,): |
|
action = action.squeeze() |
|
if self._act_scale: |
|
action = affine_transform(action, min_val=self.action_space.low, max_val=self.action_space.high) |
|
if self._save_replay_gif: |
|
self._frames.append(self._env.render()) |
|
|
|
obs, rew, terminated, truncated, info = self._env.step(action) |
|
done = terminated or truncated |
|
|
|
action_mask = None |
|
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} |
|
|
|
self._eval_episode_return += rew |
|
if self._rew_clip: |
|
rew = max(-10, rew) |
|
rew = np.float32(rew) |
|
|
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
if self._save_replay_gif: |
|
if not os.path.exists(self._replay_path_gif): |
|
os.makedirs(self._replay_path_gif) |
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") |
|
path = os.path.join( |
|
self._replay_path_gif, |
|
'{}_episode_{}_seed{}_{}.gif'.format(self._env_name, self._save_replay_count, self._seed, timestamp) |
|
) |
|
self.display_frames_as_gif(self._frames, path) |
|
print(f'save episode {self._save_replay_count} in {self._replay_path_gif}!') |
|
self._save_replay_count += 1 |
|
obs = to_ndarray(obs) |
|
rew = to_ndarray([rew]) |
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
@property |
|
def legal_actions(self) -> np.ndarray: |
|
""" |
|
Overview: |
|
Get the legal actions in the environment. |
|
Returns: |
|
- legal_actions (:obj:`np.ndarray`): An array of legal actions. |
|
""" |
|
return np.arange(self._action_space.n) |
|
|
|
@staticmethod |
|
def display_frames_as_gif(frames: list, path: str) -> None: |
|
import imageio |
|
imageio.mimsave(path, frames, fps=20) |
|
|
|
def random_action(self) -> np.ndarray: |
|
random_action = self.action_space.sample() |
|
if isinstance(random_action, np.ndarray): |
|
pass |
|
elif isinstance(random_action, int): |
|
random_action = to_ndarray([random_action], dtype=np.int64) |
|
return random_action |
|
|
|
def __repr__(self) -> str: |
|
return "LightZero BipedalWalker Env" |
|
|
|
@staticmethod |
|
def create_collector_env_cfg(cfg: dict) -> List[dict]: |
|
""" |
|
Overview: |
|
Create a list of environment configurations for the collector. |
|
Arguments: |
|
- cfg (:obj:`dict`): The base configuration dict. |
|
Returns: |
|
- cfgs (:obj:`List[dict]`): The list of environment configurations. |
|
""" |
|
collector_env_num = cfg.pop('collector_env_num') |
|
cfg = copy.deepcopy(cfg) |
|
cfg.max_episode_steps = cfg.collect_max_episode_steps |
|
return [cfg for _ in range(collector_env_num)] |
|
|
|
@staticmethod |
|
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: |
|
""" |
|
Overview: |
|
Create a list of environment configurations for the evaluator. |
|
Arguments: |
|
- cfg (:obj:`dict`): The base configuration dict. |
|
Returns: |
|
- cfgs (:obj:`List[dict]`): The list of environment configurations. |
|
""" |
|
evaluator_env_num = cfg.pop('evaluator_env_num') |
|
cfg = copy.deepcopy(cfg) |
|
cfg.max_episode_steps = cfg.eval_max_episode_steps |
|
return [cfg for _ in range(evaluator_env_num)] |
|
|