|
from easydict import EasyDict |
|
import torch |
|
import torch.nn as nn |
|
from ding.model.common import FCEncoder, ReparameterizationHead |
|
|
|
bipedalwalker_ppo_config = dict( |
|
exp_name='bipedalwalker_ppopg', |
|
env=dict( |
|
env_id='BipedalWalker-v3', |
|
collector_env_num=8, |
|
evaluator_env_num=5, |
|
|
|
act_scale=True, |
|
n_evaluator_episode=5, |
|
stop_value=500, |
|
rew_clip=True, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
action_space='continuous', |
|
model=dict( |
|
obs_shape=24, |
|
action_shape=4, |
|
), |
|
learn=dict( |
|
epoch_per_collect=10, |
|
batch_size=64, |
|
learning_rate=3e-4, |
|
entropy_weight=0.0001, |
|
clip_ratio=0.2, |
|
adv_norm=True, |
|
), |
|
collect=dict( |
|
n_episode=16, |
|
discount_factor=0.99, |
|
collector=dict(get_train_sample=True), |
|
), |
|
), |
|
) |
|
bipedalwalker_ppo_config = EasyDict(bipedalwalker_ppo_config) |
|
main_config = bipedalwalker_ppo_config |
|
bipedalwalker_ppo_create_config = dict( |
|
env=dict( |
|
type='bipedalwalker', |
|
import_names=['dizoo.box2d.bipedalwalker.envs.bipedalwalker_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict(type='ppo_pg'), |
|
collector=dict(type='episode'), |
|
) |
|
bipedalwalker_ppo_create_config = EasyDict(bipedalwalker_ppo_create_config) |
|
create_config = bipedalwalker_ppo_create_config |
|
|
|
|
|
class PPOPGContinuousModel(nn.Module): |
|
|
|
def __init__(self, obs_shape, action_shape): |
|
super(PPOPGContinuousModel, self).__init__() |
|
self.encoder = nn.Sequential(nn.Linear(obs_shape, 64), nn.Tanh()) |
|
self.head = ReparameterizationHead( |
|
hidden_size=64, |
|
output_size=action_shape, |
|
layer_num=2, |
|
sigma_type='conditioned', |
|
activation=nn.Tanh(), |
|
) |
|
|
|
def forward(self, inputs): |
|
x = self.encoder(inputs) |
|
x = self.head(x) |
|
return {'logit': x} |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
from ding.entry import serial_pipeline_onpolicy |
|
from copy import deepcopy |
|
for seed in [1, 2, 3]: |
|
new_main_config = deepcopy(main_config) |
|
new_main_config.exp_name += "_seed{}".format(seed) |
|
model = PPOPGContinuousModel(new_main_config.policy.model.obs_shape, new_main_config.policy.model.action_shape) |
|
serial_pipeline_onpolicy( |
|
[new_main_config, deepcopy(create_config)], seed=seed, max_env_step=int(5e6), model=model |
|
) |
|
|