|
import pytest |
|
import numpy as np |
|
from easydict import EasyDict |
|
from carracing_env import CarRacingEnv |
|
|
|
|
|
@pytest.mark.envtest |
|
@pytest.mark.parametrize('cfg', [EasyDict({'env_id': 'CarRacing-v2', 'continuous': False, 'act_scale': False})]) |
|
class TestCarRacing: |
|
|
|
def test_naive(self, cfg): |
|
env = CarRacingEnv(cfg) |
|
env.seed(314) |
|
assert env._seed == 314 |
|
obs = env.reset() |
|
assert obs.shape == (3, 96, 96) |
|
for i in range(10): |
|
random_action = env.random_action() |
|
timestep = env.step(random_action) |
|
print(timestep) |
|
assert isinstance(timestep.obs, np.ndarray) |
|
assert isinstance(timestep.done, bool) |
|
assert timestep.obs.shape == (3, 96, 96) |
|
assert timestep.reward.shape == (1, ) |
|
assert timestep.reward >= env.reward_space.low |
|
assert timestep.reward <= env.reward_space.high |
|
print(env.observation_space, env.action_space, env.reward_space) |
|
env.close() |
|
|