gomoku / DI-engine /dizoo /box2d /lunarlander /config /lunarlander_cont_ddpg_config.py
zjowowen's picture
init space
079c32c
raw
history blame
2.42 kB
from easydict import EasyDict
lunarlander_ddpg_config = dict(
exp_name='lunarlander_cont_ddpgs_seed0',
env=dict(
env_id='LunarLanderContinuous-v2',
collector_env_num=8,
evaluator_env_num=8,
# (bool) Scale output action into legal range.
act_scale=True,
n_evaluator_episode=8,
stop_value=200,
),
policy=dict(
cuda=False,
priority=False,
random_collect_size=0,
model=dict(
obs_shape=8,
action_shape=2,
twin_critic=True,
action_space='regression',
),
learn=dict(
update_per_collect=2,
batch_size=128,
learning_rate_actor=0.001,
learning_rate_critic=0.001,
ignore_done=False, # TODO(pu)
# (int) When critic network updates once, how many times will actor network update.
# Delayed Policy Updates in original TD3 paper(https://arxiv.org/pdf/1802.09477.pdf).
# Default 1 for DDPG, 2 for TD3.
actor_update_freq=1,
# (bool) Whether to add noise on target network's action.
# Target Policy Smoothing Regularization in original TD3 paper(https://arxiv.org/pdf/1802.09477.pdf).
# Default True for TD3, False for DDPG.
noise=False,
noise_sigma=0.1,
noise_range=dict(
min=-0.5,
max=0.5,
),
),
collect=dict(
n_sample=48,
noise_sigma=0.1,
collector=dict(collect_print_freq=1000, ),
),
eval=dict(evaluator=dict(eval_freq=100, ), ),
other=dict(replay_buffer=dict(replay_buffer_size=20000, ), ),
),
)
lunarlander_ddpg_config = EasyDict(lunarlander_ddpg_config)
main_config = lunarlander_ddpg_config
lunarlander_ddpg_create_config = dict(
env=dict(
type='lunarlander',
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='ddpg'),
)
lunarlander_ddpg_create_config = EasyDict(lunarlander_ddpg_create_config)
create_config = lunarlander_ddpg_create_config
if __name__ == '__main__':
# or you can enter `ding -m serial -c lunarlander_cont_ddpg_config.py -s 0`
from ding.entry import serial_pipeline
serial_pipeline([main_config, create_config], seed=0)