|
from easydict import EasyDict |
|
|
|
lunarlander_dqfd_config = dict( |
|
exp_name='lunarlander_dqfd_seed0', |
|
env=dict( |
|
|
|
collector_env_num=8, |
|
evaluator_env_num=8, |
|
env_id='LunarLander-v2', |
|
n_evaluator_episode=8, |
|
stop_value=200, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
model=dict( |
|
obs_shape=8, |
|
action_shape=4, |
|
encoder_hidden_size_list=[512, 64], |
|
dueling=True, |
|
), |
|
nstep=3, |
|
discount_factor=0.97, |
|
learn=dict( |
|
batch_size=64, |
|
learning_rate=0.001, |
|
lambda1=1.0, |
|
lambda2=1.0, |
|
lambda3=1e-5, |
|
per_train_iter_k=10, |
|
expert_replay_buffer_size=10000, |
|
), |
|
collect=dict( |
|
n_sample=64, |
|
|
|
|
|
|
|
model_path='model_path_placeholder', |
|
|
|
unroll_len=1, |
|
), |
|
eval=dict(evaluator=dict(eval_freq=50, )), |
|
other=dict( |
|
eps=dict( |
|
type='exp', |
|
start=0.95, |
|
end=0.1, |
|
decay=10000, |
|
), |
|
replay_buffer=dict(replay_buffer_size=20000, ), |
|
), |
|
), |
|
) |
|
lunarlander_dqfd_config = EasyDict(lunarlander_dqfd_config) |
|
main_config = lunarlander_dqfd_config |
|
lunarlander_dqfd_create_config = dict( |
|
env=dict( |
|
type='lunarlander', |
|
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict(type='dqfd'), |
|
) |
|
lunarlander_dqfd_create_config = EasyDict(lunarlander_dqfd_create_config) |
|
create_config = lunarlander_dqfd_create_config |
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
|
|
from ding.entry.serial_entry_dqfd import serial_pipeline_dqfd |
|
from dizoo.box2d.lunarlander.config import lunarlander_dqfd_config, lunarlander_dqfd_create_config |
|
expert_main_config = lunarlander_dqfd_config |
|
expert_create_config = lunarlander_dqfd_create_config |
|
serial_pipeline_dqfd([main_config, create_config], [expert_main_config, expert_create_config], seed=0) |
|
|