|
from easydict import EasyDict |
|
|
|
collector_env_num = 8 |
|
evaluator_env_num = 8 |
|
lunarlander_ppo_rnd_config = dict( |
|
exp_name='lunarlander_rnd_onppo_seed0', |
|
env=dict( |
|
collector_env_num=collector_env_num, |
|
evaluator_env_num=evaluator_env_num, |
|
env_id='LunarLander-v2', |
|
n_evaluator_episode=evaluator_env_num, |
|
stop_value=200, |
|
), |
|
reward_model=dict( |
|
intrinsic_reward_type='add', |
|
|
|
|
|
|
|
|
|
intrinsic_reward_weight=None, |
|
|
|
|
|
intrinsic_reward_rescale=0.001, |
|
learning_rate=5e-4, |
|
obs_shape=8, |
|
batch_size=320, |
|
update_per_collect=4, |
|
obs_norm=True, |
|
obs_norm_clamp_min=-1, |
|
obs_norm_clamp_max=1, |
|
clear_buffer_per_iters=10, |
|
), |
|
policy=dict( |
|
recompute_adv=True, |
|
cuda=True, |
|
action_space='discrete', |
|
model=dict( |
|
obs_shape=8, |
|
action_shape=4, |
|
action_space='discrete', |
|
), |
|
learn=dict( |
|
epoch_per_collect=10, |
|
update_per_collect=1, |
|
batch_size=64, |
|
learning_rate=3e-4, |
|
value_weight=0.5, |
|
entropy_weight=0.01, |
|
clip_ratio=0.2, |
|
adv_norm=True, |
|
value_norm=True, |
|
), |
|
collect=dict( |
|
n_sample=512, |
|
collector_env_num=collector_env_num, |
|
unroll_len=1, |
|
discount_factor=0.99, |
|
gae_lambda=0.95, |
|
), |
|
), |
|
) |
|
lunarlander_ppo_rnd_config = EasyDict(lunarlander_ppo_rnd_config) |
|
main_config = lunarlander_ppo_rnd_config |
|
lunarlander_ppo_rnd_create_config = dict( |
|
env=dict( |
|
type='lunarlander', |
|
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict(type='ppo'), |
|
reward_model=dict(type='rnd') |
|
) |
|
lunarlander_ppo_rnd_create_config = EasyDict(lunarlander_ppo_rnd_create_config) |
|
create_config = lunarlander_ppo_rnd_create_config |
|
|
|
if __name__ == "__main__": |
|
from ding.entry import serial_pipeline_reward_model_onpolicy |
|
serial_pipeline_reward_model_onpolicy([main_config, create_config], seed=0) |
|
|