|
from typing import Any, Union, List |
|
import copy |
|
import numpy as np |
|
import gym |
|
import matplotlib.pyplot as plt |
|
import einops |
|
import imageio |
|
from easydict import EasyDict |
|
|
|
from ding.envs import BaseEnv, BaseEnvTimestep |
|
from ding.envs.common.env_element import EnvElement, EnvElementInfo |
|
from ding.envs.common.common_function import affine_transform |
|
from ding.torch_utils import to_ndarray, to_list |
|
from .d4rl_wrappers import wrap_d4rl |
|
from ding.utils import ENV_REGISTRY |
|
|
|
MAZE_BOUNDS = { |
|
'maze2d-umaze-v1': (0, 5, 0, 5), |
|
'maze2d-medium-v1': (0, 8, 0, 8), |
|
'maze2d-large-v1': (0, 9, 0, 12) |
|
} |
|
|
|
def plot2img(fig, remove_margins=True): |
|
|
|
|
|
|
|
from matplotlib.backends.backend_agg import FigureCanvasAgg |
|
|
|
if remove_margins: |
|
fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) |
|
|
|
canvas = FigureCanvasAgg(fig) |
|
canvas.draw() |
|
img_as_string, (width, height) = canvas.print_to_buffer() |
|
return np.fromstring(img_as_string, dtype='uint8').reshape((height, width, 4)) |
|
|
|
def zipsafe(*args): |
|
length = len(args[0]) |
|
assert all([len(a) == length for a in args]) |
|
return zip(*args) |
|
|
|
def zipkw(*args, **kwargs): |
|
nargs = len(args) |
|
keys = kwargs.keys() |
|
vals = [kwargs[k] for k in keys] |
|
zipped = zipsafe(*args, *vals) |
|
for items in zipped: |
|
zipped_args = items[:nargs] |
|
zipped_kwargs = {k: v for k, v in zipsafe(keys, items[nargs:])} |
|
yield zipped_args, zipped_kwargs |
|
|
|
@ENV_REGISTRY.register('d4rl') |
|
class D4RLEnv(BaseEnv): |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
self._cfg = cfg |
|
self._use_act_scale = cfg.use_act_scale |
|
self._init_flag = False |
|
if 'maze' in self._cfg.env_id: |
|
self.observations = [] |
|
self._extent = (0, 1, 1, 0) |
|
|
|
def reset(self) -> np.ndarray: |
|
if not self._init_flag: |
|
self._env = self._make_env(only_info=False) |
|
self._env.observation_space.dtype = np.float32 |
|
self._observation_space = self._env.observation_space |
|
if 'maze' in self._cfg.env_id: |
|
new_low = np.tile(self._observation_space.low, 2) |
|
new_high = np.tile(self._observation_space.high, 2) |
|
self._observation_space = gym.spaces.Box(low=new_low, high=new_high) |
|
self._action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 |
|
) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._env.seed(self._seed + np_seed) |
|
elif hasattr(self, '_seed'): |
|
self._env.seed(self._seed) |
|
if 'maze' in self._cfg.env_id: |
|
target = self._env.get_target() |
|
self.target_obs = np.array([*target, 0, 0]) |
|
obs = self._env.reset() |
|
if 'maze' in self._cfg.env_id: |
|
self.observations.append(obs) |
|
obs = np.hstack((obs, self.target_obs)) |
|
obs = to_ndarray(obs).astype('float32') |
|
self._eval_episode_return = 0. |
|
return obs |
|
|
|
def close(self) -> None: |
|
if self._init_flag: |
|
self._env.close() |
|
self._init_flag = False |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
np.random.seed(self._seed) |
|
|
|
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: |
|
action = to_ndarray(action) |
|
if self._use_act_scale: |
|
action_range = {'min': self.action_space.low[0], 'max': self.action_space.high[0], 'dtype': np.float32} |
|
action = affine_transform(action, min_val=action_range['min'], max_val=action_range['max']) |
|
obs, rew, done, info = self._env.step(action) |
|
self._eval_episode_return += rew |
|
if 'maze' in self._cfg.env_id: |
|
self.observations.append(obs) |
|
obs = np.hstack([obs, self.target_obs]) |
|
obs = to_ndarray(obs).astype('float32') |
|
rew = to_ndarray([rew]) |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
|
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def renders(self, observations, conditions=None, title=None): |
|
bounds = MAZE_BOUNDS[self._cfg.env_id] |
|
|
|
observations = observations + .5 |
|
if len(bounds) == 2: |
|
_, scale = bounds |
|
observations /= scale |
|
elif len(bounds) == 4: |
|
_, iscale, _, jscale = bounds |
|
observations[:, 0] /= iscale |
|
observations[:, 1] /= jscale |
|
else: |
|
raise RuntimeError(f'Unrecognized bounds for {self._cfg.env_id}: {bounds}') |
|
|
|
if conditions is not None: |
|
conditions /= scale |
|
|
|
plt.clf() |
|
fig = plt.gcf() |
|
fig.set_size_inches(5, 5) |
|
plt.imshow(self._background * .5, |
|
extent=self._extent, cmap=plt.cm.binary, vmin=0, vmax=1) |
|
|
|
path_length = len(observations) |
|
colors = plt.cm.jet(np.linspace(0,1,path_length)) |
|
plt.plot(observations[:,1], observations[:,0], c='black', zorder=10) |
|
plt.scatter(observations[:,1], observations[:,0], c=colors, zorder=20) |
|
plt.axis('off') |
|
plt.title(title) |
|
img = plot2img(fig, remove_margins=self._remove_margins) |
|
return img |
|
|
|
def composite(self, savepath, paths, ncol=5, **kwargs): |
|
assert len(paths) % ncol == 0, 'Number of paths must be divisible by number of columns' |
|
|
|
images = [] |
|
for path, kw in zipkw(paths, **kwargs): |
|
img = self.renders(*path, **kw) |
|
images.append(img) |
|
images = np.stack(images, axis=0) |
|
|
|
nrow = len(images) // ncol |
|
images = einops.rearrange(images, |
|
'(nrow ncol) H W C -> (nrow H) (ncol W) C', nrow=nrow, ncol=ncol) |
|
imageio.imsave(savepath, images) |
|
print(f'Saved {len(paths)} samples to: {savepath}') |
|
|
|
def _make_env(self, only_info=False): |
|
return wrap_d4rl( |
|
self._cfg.env_id, |
|
norm_obs=self._cfg.get( |
|
'norm_obs', |
|
EasyDict(use_norm=False, offline_stats=dict(use_offline_stats=False, )), |
|
), |
|
norm_reward=self._cfg.get('norm_reward', EasyDict(use_norm=False, )), |
|
only_info=only_info |
|
) |
|
|
|
def __repr__(self) -> str: |
|
return "DI-engine D4RL Env({})".format(self._cfg.env_id) |
|
|
|
@staticmethod |
|
def create_collector_env_cfg(cfg: dict) -> List[dict]: |
|
collector_cfg = copy.deepcopy(cfg) |
|
collector_env_num = collector_cfg.pop('collector_env_num', 1) |
|
return [collector_cfg for _ in range(collector_env_num)] |
|
|
|
@staticmethod |
|
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: |
|
evaluator_cfg = copy.deepcopy(cfg) |
|
evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1) |
|
evaluator_cfg.get('norm_reward', EasyDict(use_norm=False, )).use_norm = False |
|
return [evaluator_cfg for _ in range(evaluator_env_num)] |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
return self._reward_space |
|
|