|
import os |
|
from easydict import EasyDict |
|
from functools import partial |
|
from tensorboardX import SummaryWriter |
|
import dmc2gym |
|
|
|
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator |
|
from ding.model import VAC |
|
from ding.policy import PPOPolicy |
|
from ding.envs import DingEnvWrapper, EvalEpisodeReturnWrapper, BaseEnvManager |
|
from ding.config import compile_config |
|
from ding.utils import set_pkg_seed |
|
from dizoo.dmc2gym.config.dmc2gym_ppo_config import cartpole_balance_ppo_config |
|
from dizoo.dmc2gym.envs.dmc2gym_env import * |
|
|
|
|
|
class Dmc2GymWrapper(gym.Wrapper): |
|
|
|
def __init__(self, env, cfg): |
|
super().__init__(env) |
|
cfg = EasyDict(cfg) |
|
self._cfg = cfg |
|
|
|
env_info = dmc2gym_env_info[cfg.domain_name][cfg.task_name] |
|
|
|
self._observation_space = env_info["observation_space"]( |
|
from_pixels=self._cfg["from_pixels"], |
|
height=self._cfg["height"], |
|
width=self._cfg["width"], |
|
channels_first=self._cfg["channels_first"] |
|
) |
|
self._action_space = env_info["action_space"] |
|
self._reward_space = env_info["reward_space"](self._cfg["frame_skip"]) |
|
|
|
def _process_obs(self, obs): |
|
if self._cfg["from_pixels"]: |
|
obs = to_ndarray(obs).astype(np.uint8) |
|
else: |
|
obs = to_ndarray(obs).astype(np.float32) |
|
return obs |
|
|
|
def step(self, action): |
|
action = np.array([action]).astype('float32') |
|
obs, reward, done, info = self.env.step(action) |
|
return self._process_obs(obs), reward, done, info |
|
|
|
def reset(self): |
|
obs = self.env.reset() |
|
return self._process_obs(obs) |
|
|
|
|
|
def wrapped_dmc2gym_env(cfg): |
|
default_cfg = { |
|
"frame_skip": 3, |
|
"from_pixels": True, |
|
"visualize_reward": False, |
|
"height": 100, |
|
"width": 100, |
|
"channels_first": True, |
|
} |
|
default_cfg.update(cfg) |
|
|
|
return DingEnvWrapper( |
|
dmc2gym.make( |
|
domain_name=default_cfg["domain_name"], |
|
task_name=default_cfg["task_name"], |
|
seed=1, |
|
visualize_reward=default_cfg["visualize_reward"], |
|
from_pixels=default_cfg["from_pixels"], |
|
height=default_cfg["height"], |
|
width=default_cfg["width"], |
|
frame_skip=default_cfg["frame_skip"] |
|
), |
|
cfg={ |
|
'env_wrapper': [ |
|
lambda env: Dmc2GymWrapper(env, default_cfg), |
|
lambda env: EvalEpisodeReturnWrapper(env), |
|
] |
|
} |
|
) |
|
|
|
|
|
def main(cfg, seed=0, max_env_step=int(1e10), max_train_iter=int(1e10)): |
|
cfg = compile_config( |
|
cfg, BaseEnvManager, PPOPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, save_cfg=True |
|
) |
|
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num |
|
collector_env = BaseEnvManager( |
|
env_fn=[partial(wrapped_dmc2gym_env, cfg=cartpole_balance_ppo_config.env) for _ in range(collector_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
evaluator_env = BaseEnvManager( |
|
env_fn=[partial(wrapped_dmc2gym_env, cfg=cartpole_balance_ppo_config.env) for _ in range(evaluator_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
|
|
collector_env.seed(seed) |
|
evaluator_env.seed(seed, dynamic_seed=False) |
|
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) |
|
|
|
model = VAC(**cfg.policy.model) |
|
policy = PPOPolicy(cfg.policy, model=model) |
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) |
|
collector = SampleSerialCollector( |
|
cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
evaluator = InteractionSerialEvaluator( |
|
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
|
|
while True: |
|
if evaluator.should_eval(learner.train_iter): |
|
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) |
|
if stop: |
|
break |
|
new_data = collector.collect(train_iter=learner.train_iter) |
|
learner.train(new_data, collector.envstep) |
|
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: |
|
break |
|
|
|
|
|
if __name__ == '__main__': |
|
main(cartpole_balance_ppo_config) |
|
|