gomoku / DI-engine /dizoo /gym_hybrid /entry /gym_hybrid_ddpg_eval.py
zjowowen's picture
init space
079c32c
raw
history blame
2.22 kB
import os
import gym
import torch
from tensorboardX import SummaryWriter
from easydict import EasyDict
from functools import partial
from ding.config import compile_config
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer
from ding.envs import BaseEnvManager, DingEnvWrapper
from ding.envs import get_vec_env_setting
from ding.policy import DDPGPolicy
from ding.model import ContinuousQAC
from ding.utils import set_pkg_seed
from ding.rl_utils import get_epsilon_greedy_fn
from dizoo.gym_hybrid.config.gym_hybrid_ddpg_config import gym_hybrid_ddpg_config, gym_hybrid_ddpg_create_config
def main(main_cfg, create_cfg, seed=0):
# Specify evaluation arguments
main_cfg.policy.load_path = './ckpt_best.pth.tar'
main_cfg.env.replay_path = './'
main_cfg.env.evaluator_env_num = 1 # only 1 env for save replay
cfg = compile_config(main_cfg, seed=seed, auto=True, create_cfg=create_cfg, save_cfg=True)
# Create main components: env, policy
env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env)
evaluator_env = BaseEnvManager([partial(env_fn, cfg=c) for c in evaluator_env_cfg], cfg.env.manager)
evaluator_env.enable_save_replay(cfg.env.replay_path) # switch save replay interface
# Set random seed for all package and instance
evaluator_env.seed(seed, dynamic_seed=False)
set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
# Set up RL Policy
model = ContinuousQAC(**cfg.policy.model)
policy = DDPGPolicy(cfg.policy, model=model)
policy.eval_mode.load_state_dict(torch.load(cfg.policy.load_path, map_location='cpu'))
# evaluate
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
evaluator = InteractionSerialEvaluator(
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name
)
evaluator.eval()
if __name__ == "__main__":
# gym_hybrid environmrnt rendering is using API from "gym.envs.classic_control.rendering"
# which is abandoned in gym >= 0.22.0, please check the gym version before rendering.
main(gym_hybrid_ddpg_config, gym_hybrid_ddpg_create_config, seed=0)