gomoku / DI-engine /dizoo /league_demo /league_demo_ppo_main.py
zjowowen's picture
init space
079c32c
raw
history blame
10.2 kB
import os
import copy
import gym
import numpy as np
import torch
from tensorboardX import SummaryWriter
from easydict import EasyDict
from ding.config import compile_config
from ding.worker import BaseLearner, BattleInteractionSerialEvaluator, NaiveReplayBuffer
from ding.envs import BaseEnvManager, DingEnvWrapper
from ding.policy import PPOPolicy
from ding.model import VAC
from ding.utils import set_pkg_seed, Scheduler, deep_merge_dicts
from dizoo.league_demo.game_env import GameEnv
from dizoo.league_demo.demo_league import DemoLeague
from dizoo.league_demo.league_demo_collector import LeagueDemoCollector
from dizoo.league_demo.league_demo_ppo_config import league_demo_ppo_config
class EvalPolicy1:
def __init__(self, optimal_policy: list) -> None:
assert len(optimal_policy) == 2
self.optimal_policy = optimal_policy
def forward(self, data: dict) -> dict:
return {
env_id: {
'action': torch.from_numpy(np.random.choice([0, 1], p=self.optimal_policy, size=(1, )))
}
for env_id in data.keys()
}
def reset(self, data_id: list = []) -> None:
pass
class EvalPolicy2:
def forward(self, data: dict) -> dict:
return {
env_id: {
'action': torch.from_numpy(np.random.choice([0, 1], p=[0.5, 0.5], size=(1, )))
}
for env_id in data.keys()
}
def reset(self, data_id: list = []) -> None:
pass
def main(cfg, seed=0, max_train_iter=int(1e8), max_env_step=int(1e8)):
cfg = compile_config(
cfg,
BaseEnvManager,
PPOPolicy,
BaseLearner,
LeagueDemoCollector,
BattleInteractionSerialEvaluator,
NaiveReplayBuffer,
save_cfg=True
)
env_type = cfg.env.env_type
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num
evaluator_env1 = BaseEnvManager(
env_fn=[lambda: GameEnv(env_type) for _ in range(evaluator_env_num)], cfg=cfg.env.manager
)
evaluator_env2 = BaseEnvManager(
env_fn=[lambda: GameEnv(env_type) for _ in range(evaluator_env_num)], cfg=cfg.env.manager
)
evaluator_env3 = BaseEnvManager(
env_fn=[lambda: GameEnv(env_type) for _ in range(evaluator_env_num)], cfg=cfg.env.manager
)
evaluator_env1.seed(seed, dynamic_seed=False)
evaluator_env2.seed(seed, dynamic_seed=False)
evaluator_env3.seed(seed, dynamic_seed=False)
set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
league = DemoLeague(cfg.policy.other.league)
eval_policy1 = EvalPolicy1(evaluator_env1._env_ref.optimal_policy)
eval_policy2 = EvalPolicy2()
policies = {}
learners = {}
collectors = {}
for player_id in league.active_players_ids:
# default set the same arch model(different init weight)
model = VAC(**cfg.policy.model)
policy = PPOPolicy(cfg.policy, model=model)
policies[player_id] = policy
collector_env = BaseEnvManager(
env_fn=[lambda: GameEnv(env_type) for _ in range(collector_env_num)], cfg=cfg.env.manager
)
collector_env.seed(seed)
learners[player_id] = BaseLearner(
cfg.policy.learn.learner,
policy.learn_mode,
tb_logger=tb_logger,
exp_name=cfg.exp_name,
instance_name=player_id + '_learner'
)
collectors[player_id] = LeagueDemoCollector(
cfg.policy.collect.collector,
collector_env,
tb_logger=tb_logger,
exp_name=cfg.exp_name,
instance_name=player_id + '_collector',
)
model = VAC(**cfg.policy.model)
policy = PPOPolicy(cfg.policy, model=model)
policies['historical'] = policy
# use initial policy as another eval_policy
eval_policy3 = PPOPolicy(cfg.policy, model=copy.deepcopy(model)).collect_mode
main_key = [k for k in learners.keys() if k.startswith('main_player')][0]
main_player = league.get_player_by_id(main_key)
main_learner = learners[main_key]
main_collector = collectors[main_key]
# collect_mode ppo use multinomial sample for selecting action
evaluator1_cfg = copy.deepcopy(cfg.policy.eval.evaluator)
evaluator1_cfg.stop_value = cfg.env.stop_value[0]
evaluator1 = BattleInteractionSerialEvaluator(
evaluator1_cfg,
evaluator_env1, [policies[main_key].collect_mode, eval_policy1],
tb_logger,
exp_name=cfg.exp_name,
instance_name='fixed_evaluator'
)
evaluator2_cfg = copy.deepcopy(cfg.policy.eval.evaluator)
evaluator2_cfg.stop_value = cfg.env.stop_value[1]
evaluator2 = BattleInteractionSerialEvaluator(
evaluator2_cfg,
evaluator_env2, [policies[main_key].collect_mode, eval_policy2],
tb_logger,
exp_name=cfg.exp_name,
instance_name='uniform_evaluator'
)
evaluator3_cfg = copy.deepcopy(cfg.policy.eval.evaluator)
evaluator3_cfg.stop_value = 99999999 # stop_value of evaluator3 is a placeholder
evaluator3 = BattleInteractionSerialEvaluator(
evaluator3_cfg,
evaluator_env3, [policies[main_key].collect_mode, eval_policy3],
tb_logger,
exp_name=cfg.exp_name,
instance_name='init_evaluator'
)
def load_checkpoint_fn(player_id: str, ckpt_path: str):
state_dict = torch.load(ckpt_path)
policies[player_id].learn_mode.load_state_dict(state_dict)
torch.save(policies['historical'].learn_mode.state_dict(), league.reset_checkpoint_path)
league.load_checkpoint = load_checkpoint_fn
# snapshot the initial player as the first historial player
for player_id, player_ckpt_path in zip(league.active_players_ids, league.active_players_ckpts):
torch.save(policies[player_id].collect_mode.state_dict(), player_ckpt_path)
league.judge_snapshot(player_id, force=True)
init_main_player_rating = league.metric_env.create_rating(mu=0)
count = 0
while True:
if evaluator1.should_eval(main_learner.train_iter):
stop_flag1, episode_info = evaluator1.eval(
main_learner.save_checkpoint, main_learner.train_iter, main_collector.envstep
)
win_loss_result = [e['result'] for e in episode_info[0]]
# set fixed NE policy trueskill(exposure) equal 10
main_player.rating = league.metric_env.rate_1vsC(
main_player.rating, league.metric_env.create_rating(mu=10, sigma=1e-8), win_loss_result
)
if evaluator2.should_eval(main_learner.train_iter):
stop_flag2, episode_info = evaluator2.eval(
main_learner.save_checkpoint, main_learner.train_iter, main_collector.envstep
)
win_loss_result = [e['result'] for e in episode_info[0]]
# set random(uniform) policy trueskill(exposure) equal 0
main_player.rating = league.metric_env.rate_1vsC(
main_player.rating, league.metric_env.create_rating(mu=0, sigma=1e-8), win_loss_result
)
if evaluator3.should_eval(main_learner.train_iter):
_, episode_info = evaluator3.eval(
main_learner.save_checkpoint, main_learner.train_iter, main_collector.envstep
)
win_loss_result = [e['result'] for e in episode_info[0]]
# use init main player as another evaluator metric
main_player.rating, init_main_player_rating = league.metric_env.rate_1vs1(
main_player.rating, init_main_player_rating, win_loss_result
)
tb_logger.add_scalar(
'league/init_main_player_trueskill', init_main_player_rating.exposure, main_collector.envstep
)
if stop_flag1 and stop_flag2:
break
for player_id, player_ckpt_path in zip(league.active_players_ids, league.active_players_ckpts):
tb_logger.add_scalar(
'league/{}_trueskill'.format(player_id),
league.get_player_by_id(player_id).rating.exposure, main_collector.envstep
)
collector, learner = collectors[player_id], learners[player_id]
job = league.get_job_info(player_id)
opponent_player_id = job['player_id'][1]
# print('job player: {}'.format(job['player_id']))
if 'historical' in opponent_player_id:
opponent_policy = policies['historical'].collect_mode
opponent_path = job['checkpoint_path'][1]
opponent_policy.load_state_dict(torch.load(opponent_path, map_location='cpu'))
else:
opponent_policy = policies[opponent_player_id].collect_mode
collector.reset_policy([policies[player_id].collect_mode, opponent_policy])
train_data, episode_info = collector.collect(train_iter=learner.train_iter)
train_data, episode_info = train_data[0], episode_info[0] # only use launch player data for training
for d in train_data:
d['adv'] = d['reward']
for i in range(cfg.policy.learn.update_per_collect):
learner.train(train_data, collector.envstep)
torch.save(learner.policy.state_dict(), player_ckpt_path)
player_info = learner.learn_info
player_info['player_id'] = player_id
league.update_active_player(player_info)
league.judge_snapshot(player_id)
# set eval_flag=True to enable trueskill update
job_finish_info = {
'eval_flag': True,
'launch_player': job['launch_player'],
'player_id': job['player_id'],
'result': [e['result'] for e in episode_info],
}
league.finish_job(job_finish_info)
if main_collector.envstep >= max_env_step or main_learner.train_iter >= max_train_iter:
break
if count % 100 == 0:
print(repr(league.payoff))
count += 1
if __name__ == "__main__":
main(league_demo_ppo_config)