gomoku / DI-engine /dizoo /minigrid /entry /minigrid_onppo_main.py
zjowowen's picture
init space
079c32c
raw
history blame
3.38 kB
import gym
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator
from ding.model import VAC
from ding.policy import PPOPolicy
from ding.envs import DingEnvWrapper, EvalEpisodeReturnWrapper, BaseEnvManager
from ding.config import compile_config
from ding.utils import set_pkg_seed
from dizoo.minigrid.config.minigrid_onppo_config import minigrid_ppo_config
from minigrid.wrappers import FlatObsWrapper
import numpy as np
from tensorboardX import SummaryWriter
import os
import gymnasium
class MinigridWrapper(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
self._observation_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(8, ), dtype=np.float32)
self._action_space = gym.spaces.Discrete(9)
self._action_space.seed(0) # default seed
self.reward_range = (float('-inf'), float('inf'))
self.max_steps = minigrid_ppo_config.env.max_step
def step(self, action):
obs, reward, done, _, info = self.env.step(action)
self.cur_step += 1
if self.cur_step > self.max_steps:
done = True
return obs, reward, done, info
def reset(self):
self.cur_step = 0
return self.env.reset()[0]
def wrapped_minigrid_env():
return DingEnvWrapper(
gymnasium.make(minigrid_ppo_config.env.env_id),
cfg={
'env_wrapper': [
lambda env: FlatObsWrapper(env),
lambda env: MinigridWrapper(env),
lambda env: EvalEpisodeReturnWrapper(env),
]
}
)
def main(cfg, seed=0, max_env_step=int(1e10), max_train_iter=int(1e10)):
cfg = compile_config(
cfg, BaseEnvManager, PPOPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, save_cfg=True
)
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num
collector_env = BaseEnvManager(env_fn=[wrapped_minigrid_env for _ in range(collector_env_num)], cfg=cfg.env.manager)
evaluator_env = BaseEnvManager(env_fn=[wrapped_minigrid_env for _ in range(evaluator_env_num)], cfg=cfg.env.manager)
collector_env.seed(seed)
evaluator_env.seed(seed, dynamic_seed=False)
set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
model = VAC(**cfg.policy.model)
policy = PPOPolicy(cfg.policy, model=model)
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name)
collector = SampleSerialCollector(
cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name
)
evaluator = InteractionSerialEvaluator(
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name
)
while True:
if evaluator.should_eval(learner.train_iter):
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep)
if stop:
break
new_data = collector.collect(train_iter=learner.train_iter)
learner.train(new_data, collector.envstep)
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter:
break
if __name__ == '__main__':
main(minigrid_ppo_config)