|
from easydict import EasyDict |
|
|
|
maze_dqn_config = dict( |
|
env=dict( |
|
collector_env_num=4, |
|
env_id='maze', |
|
evaluator_env_num=4, |
|
n_evaluator_episode=4, |
|
stop_value=10, |
|
), |
|
policy=dict( |
|
cuda=False, |
|
model=dict( |
|
obs_shape=[3, 64, 64], |
|
action_shape=15, |
|
encoder_hidden_size_list=[128, 128, 512], |
|
dueling=False, |
|
), |
|
discount_factor=0.99, |
|
learn=dict( |
|
update_per_collect=20, |
|
batch_size=32, |
|
learning_rate=0.0005, |
|
target_update_freq=500, |
|
discount_factor=0.99, |
|
), |
|
collect=dict(n_sample=100, ), |
|
eval=dict(evaluator=dict(eval_freq=5000, )), |
|
other=dict( |
|
eps=dict( |
|
type='exp', |
|
start=1., |
|
end=0.05, |
|
decay=250000, |
|
), |
|
replay_buffer=dict(replay_buffer_size=100000, ), |
|
), |
|
), |
|
) |
|
maze_dqn_config = EasyDict(maze_dqn_config) |
|
main_config = maze_dqn_config |
|
|
|
maze_dqn_create_config = dict( |
|
env=dict( |
|
type='procgen', |
|
import_names=['dizoo.procgen.envs.procgen_env'], |
|
), |
|
env_manager=dict(type='subprocess', ), |
|
policy=dict(type='dqn'), |
|
) |
|
maze_dqn_create_config = EasyDict(maze_dqn_create_config) |
|
create_config = maze_dqn_create_config |
|
|