zjowowen's picture
init space
079c32c
raw
history blame
4.68 kB
from typing import Any, List, Union, Optional
import gym
import numpy as np
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.torch_utils import to_ndarray, to_list
from ding.utils import ENV_REGISTRY
@ENV_REGISTRY.register('mountain_car')
class MountainCarEnv(BaseEnv):
"""
Implementation of DI-engine's version of the Mountain Car deterministic MDP.
Important references that contributed to the creation of this env:
> Source code of OpenAI's mountain car gym : https://is.gd/y1FkMT
> Gym documentation of mountain car : https://is.gd/29S0dt
> Based off DI-engine existing implementation of cartpole_env.py
> DI-engine's env creation conventions : https://is.gd/ZHLISj
Only __init__ , step, seed and reset are mandatory & impt.
The other methods are generally for convenience.
"""
def __init__(self, cfg: EasyDict) -> None:
self._cfg = cfg
self._init_flag = False
self._replay_path = None
# Following specifications from https://is.gd/29S0dt
self._observation_space = gym.spaces.Box(
low=np.array([-1.2, -0.07]), high=np.array([0.6, 0.07]), shape=(2, ), dtype=np.float32
)
self._action_space = gym.spaces.Discrete(3, start=0)
self._reward_space = gym.spaces.Box(low=-1, high=0.0, shape=(1, ), dtype=np.float32)
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
def reset(self) -> np.ndarray:
# Instantiate environment if not already done so
if not self._init_flag:
self._env = gym.make('MountainCar-v0')
self._init_flag = True
# Check if we have a valid replay path and save replay video accordingly
if self._replay_path is not None:
self._env = gym.wrappers.RecordVideo(
self._env,
video_folder=self._replay_path,
episode_trigger=lambda episode_id: True,
name_prefix='rl-video-{}'.format(id(self))
)
# Set the seeds for randomization.
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
np_seed = 100 * np.random.randint(1, 1000)
self._env.seed(self._seed + np_seed)
self._action_space.seed(self._seed + np_seed)
elif hasattr(self, '_seed'):
self._env.seed(self._seed)
self._action_space.seed(self._seed)
# Get first observation from original environment
obs = self._env.reset()
# Convert to numpy array as output
obs = to_ndarray(obs).astype(np.float32)
# Init final reward : cumulative sum of the real rewards obtained by a whole episode,
# used to evaluate the agent Performance on this environment, not used for training.
self._eval_episode_return = 0.
return obs
def step(self, action: np.ndarray) -> BaseEnvTimestep:
# Making sure that input action is of numpy ndarray
assert isinstance(action, np.ndarray), type(action)
# Extract action as int, 0-dim array
action = action.squeeze()
# Take a step of faith into the unknown!
obs, rew, done, info = self._env.step(action)
# Cummulate reward
self._eval_episode_return += rew
# Save final cummulative reward when done.
if done:
info['eval_episode_return'] = self._eval_episode_return
# Making sure we conform to di-engine conventions
obs = to_ndarray(obs)
rew = to_ndarray([rew]).astype(np.float32)
return BaseEnvTimestep(obs, rew, done, info)
def close(self) -> None:
# If init flag is False, then reset() was never run, no point closing.
if self._init_flag:
self._env.close()
self._init_flag = False
def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
if replay_path is None:
replay_path = './video'
self._replay_path = replay_path
def random_action(self) -> np.ndarray:
random_action = self.action_space.sample()
random_action = to_ndarray([random_action], dtype=np.int64)
return random_action
@property
def observation_space(self) -> gym.spaces.Space:
return self._observation_space
@property
def action_space(self) -> gym.spaces.Space:
return self._action_space
@property
def reward_space(self) -> gym.spaces.Space:
return self._reward_space
def __repr__(self) -> str:
return "DI-engine Mountain Car Env"