zjowowen's picture
init space
079c32c
raw
history blame
2.63 kB
from easydict import EasyDict
pong_ppg_config = dict(
exp_name='pong_ppg_seed0',
env=dict(
collector_env_num=8,
evaluator_env_num=8,
n_evaluator_episode=8,
stop_value=20,
env_id='PongNoFrameskip-v4',
#'ALE/Pong-v5' is available. But special setting is needed after gym make.
frame_stack=4,
),
policy=dict(
cuda=True,
model=dict(
obs_shape=[4, 84, 84],
action_shape=6,
encoder_hidden_size_list=[64, 64, 128],
critic_head_hidden_size=128,
actor_head_hidden_size=128,
),
learn=dict(
update_per_collect=24,
batch_size=128,
# (bool) Whether to normalize advantage. Default to False.
adv_norm=False,
learning_rate=0.0001,
# (float) loss weight of the value network, the weight of policy network is set to 1
value_weight=0.5,
# (float) loss weight of the entropy regularization, the weight of policy network is set to 1
entropy_weight=0.03,
clip_ratio=0.1,
epochs_aux=6,
beta_weight=1,
aux_freq=100
),
collect=dict(
# (int) collect n_sample data, train model n_iteration times
n_sample=1024,
# (float) the trade-off factor lambda to balance 1step td and mc
gae_lambda=0.95,
discount_factor=0.99,
),
eval=dict(evaluator=dict(eval_freq=1000, )),
other=dict(
replay_buffer=dict(
multi_buffer=True,
policy=dict(
replay_buffer_size=100000,
max_use=3,
),
value=dict(
replay_buffer_size=100000,
max_use=5,
),
),
),
),
)
main_config = EasyDict(pong_ppg_config)
pong_ppg_create_config = dict(
env=dict(
type='atari',
import_names=['dizoo.atari.envs.atari_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='ppg_offpolicy'),
)
create_config = EasyDict(pong_ppg_create_config)
if __name__ == "__main__":
import os
import warnings
from dizoo.atari.entry.atari_ppg_main import main
from dizoo.atari.entry.atari_ppg_main import __file__ as _origin_py_file
origin_py_file_rel = os.path.relpath(_origin_py_file, os.path.abspath(os.path.curdir))
warnings.warn(UserWarning(f"This config file can be executed by {repr(origin_py_file_rel)}"))
main(main_config)