| import os | |
| import gym | |
| from tensorboardX import SummaryWriter | |
| from ding.config import compile_config | |
| from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, NaiveReplayBuffer | |
| from ding.envs import BaseEnvManager, DingEnvWrapper | |
| from ding.policy import PPOPolicy | |
| from ding.model import VAC | |
| from ding.utils import set_pkg_seed | |
| from dizoo.classic_control.pendulum.envs import PendulumEnv | |
| from dizoo.classic_control.pendulum.config.pendulum_ppo_config import pendulum_ppo_config | |
| def main(cfg, seed=0, max_iterations=int(1e10)): | |
| cfg = compile_config( | |
| cfg, | |
| BaseEnvManager, | |
| PPOPolicy, | |
| BaseLearner, | |
| SampleSerialCollector, | |
| InteractionSerialEvaluator, | |
| NaiveReplayBuffer, | |
| save_cfg=True | |
| ) | |
| collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num | |
| collector_env = BaseEnvManager( | |
| env_fn=[lambda: PendulumEnv(cfg=cfg.env) for _ in range(collector_env_num)], cfg=cfg.env.manager | |
| ) | |
| evaluator_env = BaseEnvManager( | |
| env_fn=[lambda: PendulumEnv(cfg=cfg.env) for _ in range(evaluator_env_num)], cfg=cfg.env.manager | |
| ) | |
| collector_env.seed(seed) | |
| evaluator_env.seed(seed, dynamic_seed=False) | |
| set_pkg_seed(seed, use_cuda=cfg.policy.cuda) | |
| model = VAC(**cfg.policy.model) | |
| policy = PPOPolicy(cfg.policy, model=model) | |
| tb_logger = SummaryWriter(os.path.join('./log/', 'serial')) | |
| learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger) | |
| collector = SampleSerialCollector(cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger) | |
| evaluator = InteractionSerialEvaluator(cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger) | |
| for _ in range(max_iterations): | |
| if evaluator.should_eval(learner.train_iter): | |
| stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
| if stop: | |
| break | |
| new_data = collector.collect(train_iter=learner.train_iter) | |
| learner.train(new_data, collector.envstep) | |
| if __name__ == "__main__": | |
| main(pendulum_ppo_config) | |