|
import math |
|
import torch |
|
from torch.utils.data import Sampler |
|
from ding.utils import get_rank, get_world_size |
|
|
|
|
|
class DistributedSampler(Sampler): |
|
"""Sampler that restricts data loading to a subset of the dataset. |
|
|
|
It is especially useful in conjunction with |
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each |
|
process can pass a DistributedSampler instance as a DataLoader sampler, |
|
and load a subset of the original dataset that is exclusive to it. |
|
|
|
.. note:: |
|
Dataset is assumed to be of constant size. |
|
|
|
Arguments: |
|
dataset: Dataset used for sampling. |
|
world_size (optional): Number of processes participating in |
|
distributed training. |
|
rank (optional): Rank of the current process within world_size. |
|
""" |
|
|
|
def __init__(self, dataset, world_size=None, rank=None, round_up=True): |
|
if world_size is None: |
|
world_size = get_world_size() |
|
if rank is None: |
|
rank = get_rank() |
|
self.dataset = dataset |
|
self.world_size = world_size |
|
self.rank = rank |
|
self.round_up = round_up |
|
self.epoch = 0 |
|
|
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.world_size)) |
|
if self.round_up: |
|
self.total_size = self.num_samples * self.world_size |
|
else: |
|
self.total_size = len(self.dataset) |
|
|
|
def __iter__(self): |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
indices = list(torch.randperm(len(self.dataset), generator=g)) |
|
|
|
|
|
if self.round_up: |
|
indices += indices[:(self.total_size - len(indices))] |
|
assert len(indices) == self.total_size |
|
|
|
|
|
offset = self.num_samples * self.rank |
|
indices = indices[offset:offset + self.num_samples] |
|
if self.round_up or (not self.round_up and self.rank < self.world_size - 1): |
|
assert len(indices) == self.num_samples |
|
|
|
return iter(indices) |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |
|
|