zjowowen's picture
init space
079c32c
raw
history blame
2.21 kB
import math
import torch
from torch.utils.data import Sampler
from ding.utils import get_rank, get_world_size
class DistributedSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
world_size (optional): Number of processes participating in
distributed training.
rank (optional): Rank of the current process within world_size.
"""
def __init__(self, dataset, world_size=None, rank=None, round_up=True):
if world_size is None:
world_size = get_world_size()
if rank is None:
rank = get_rank()
self.dataset = dataset
self.world_size = world_size
self.rank = rank
self.round_up = round_up
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.world_size))
if self.round_up:
self.total_size = self.num_samples * self.world_size
else:
self.total_size = len(self.dataset)
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = list(torch.randperm(len(self.dataset), generator=g))
# add extra samples to make it evenly divisible
if self.round_up:
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
offset = self.num_samples * self.rank
indices = indices[offset:offset + self.num_samples]
if self.round_up or (not self.round_up and self.rank < self.world_size - 1):
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch