zjowowen's picture
init space
079c32c
raw
history blame
7.06 kB
from typing import Union, Optional, Tuple, List
import time
import os
import torch
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from ding.worker import BaseLearner, LearnerHook, MetricSerialEvaluator, IMetric
from ding.config import read_config, compile_config
from ding.torch_utils import resnet18
from ding.utils import set_pkg_seed, get_rank, dist_init
from dizoo.image_classification.policy import ImageClassificationPolicy
from dizoo.image_classification.data import ImageNetDataset, DistributedSampler
from dizoo.image_classification.entry.imagenet_res18_config import imagenet_res18_config
class ImageClsLogShowHook(LearnerHook):
def __init__(self, *args, freq: int = 1, **kwargs) -> None:
super().__init__(*args, **kwargs)
self._freq = freq
def __call__(self, engine: 'BaseLearner') -> None: # noqa
# Only show log for rank 0 learner
if engine.rank != 0:
for k in engine.log_buffer:
engine.log_buffer[k].clear()
return
# For 'scalar' type variables: log_buffer -> tick_monitor -> monitor_time.step
for k, v in engine.log_buffer['scalar'].items():
setattr(engine.monitor, k, v)
engine.monitor.time.step()
iters = engine.last_iter.val
if iters % self._freq == 0:
# For 'scalar' type variables: tick_monitor -> var_dict -> text_logger & tb_logger
var_dict = {}
log_vars = engine.policy.monitor_vars()
attr = 'avg'
for k in log_vars:
k_attr = k + '_' + attr
var_dict[k_attr] = getattr(engine.monitor, attr)[k]()
# user-defined variable
var_dict['data_time_val'] = engine.data_time
epoch_info = engine.epoch_info
var_dict['epoch_val'] = epoch_info[0]
engine.logger.info(
'Epoch: {} [{:>4d}/{}]\t'
'Loss: {:>6.4f}\t'
'Data Time: {:.3f}\t'
'Forward Time: {:.3f}\t'
'Backward Time: {:.3f}\t'
'GradSync Time: {:.3f}\t'
'LR: {:.3e}'.format(
var_dict['epoch_val'], epoch_info[1], epoch_info[2], var_dict['total_loss_avg'],
var_dict['data_time_val'], var_dict['forward_time_avg'], var_dict['backward_time_avg'],
var_dict['sync_time_avg'], var_dict['cur_lr_avg']
)
)
for k, v in var_dict.items():
engine.tb_logger.add_scalar('{}/'.format(engine.instance_name) + k, v, iters)
# For 'histogram' type variables: log_buffer -> tb_var_dict -> tb_logger
tb_var_dict = {}
for k in engine.log_buffer['histogram']:
new_k = '{}/'.format(engine.instance_name) + k
tb_var_dict[new_k] = engine.log_buffer['histogram'][k]
for k, v in tb_var_dict.items():
engine.tb_logger.add_histogram(k, v, iters)
for k in engine.log_buffer:
engine.log_buffer[k].clear()
class ImageClassificationMetric(IMetric):
def __init__(self) -> None:
self.loss = torch.nn.CrossEntropyLoss()
@staticmethod
def accuracy(inputs: torch.Tensor, label: torch.Tensor, topk: Tuple = (1, 5)) -> dict:
"""Computes the accuracy over the k top predictions for the specified values of k"""
maxk = max(topk)
batch_size = label.size(0)
_, pred = inputs.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(label.reshape(1, -1).expand_as(pred))
return {'acc{}'.format(k): correct[:k].reshape(-1).float().sum(0) * 100. / batch_size for k in topk}
def eval(self, inputs: torch.Tensor, label: torch.Tensor) -> dict:
"""
Returns:
- eval_result (:obj:`dict`): {'loss': xxx, 'acc1': xxx, 'acc5': xxx}
"""
loss = self.loss(inputs, label)
output = self.accuracy(inputs, label)
output['loss'] = loss
for k in output:
output[k] = output[k].item()
return output
def reduce_mean(self, inputs: List[dict]) -> dict:
L = len(inputs)
output = {}
for k in inputs[0].keys():
output[k] = sum([t[k] for t in inputs]) / L
return output
def gt(self, metric1: dict, metric2: dict) -> bool:
if metric2 is None:
return True
for k in metric1:
if metric1[k] < metric2[k]:
return False
return True
def main(cfg: dict, seed: int) -> None:
cfg = compile_config(cfg, seed=seed, policy=ImageClassificationPolicy, evaluator=MetricSerialEvaluator)
if cfg.policy.multi_gpu:
rank, world_size = dist_init()
else:
rank, world_size = 0, 1
# Random seed
set_pkg_seed(cfg.seed + rank, use_cuda=cfg.policy.cuda)
model = resnet18()
policy = ImageClassificationPolicy(cfg.policy, model=model, enable_field=['learn', 'eval'])
learn_dataset = ImageNetDataset(cfg.policy.collect.learn_data_path, is_training=True)
eval_dataset = ImageNetDataset(cfg.policy.collect.eval_data_path, is_training=False)
if cfg.policy.multi_gpu:
learn_sampler = DistributedSampler(learn_dataset)
eval_sampler = DistributedSampler(eval_dataset)
else:
learn_sampler, eval_sampler = None, None
learn_dataloader = DataLoader(learn_dataset, cfg.policy.learn.batch_size, sampler=learn_sampler, num_workers=3)
eval_dataloader = DataLoader(eval_dataset, cfg.policy.eval.batch_size, sampler=eval_sampler, num_workers=2)
# Main components
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name)
log_show_hook = ImageClsLogShowHook(
name='image_cls_log_show_hook', priority=0, position='after_iter', freq=cfg.policy.learn.learner.log_show_freq
)
learner.register_hook(log_show_hook)
eval_metric = ImageClassificationMetric()
evaluator = MetricSerialEvaluator(
cfg.policy.eval.evaluator, [eval_dataloader, eval_metric], policy.eval_mode, tb_logger, exp_name=cfg.exp_name
)
# ==========
# Main loop
# ==========
learner.call_hook('before_run')
end = time.time()
for epoch in range(cfg.policy.learn.train_epoch):
# Evaluate policy performance
if evaluator.should_eval(learner.train_iter):
stop, reward = evaluator.eval(learner.save_checkpoint, epoch, 0)
if stop:
break
for i, train_data in enumerate(learn_dataloader):
learner.data_time = time.time() - end
learner.epoch_info = (epoch, i, len(learn_dataloader))
learner.train(train_data)
end = time.time()
learner.policy.get_attribute('lr_scheduler').step()
learner.call_hook('after_run')
if __name__ == "__main__":
main(imagenet_res18_config, 0)