|
from easydict import EasyDict |
|
|
|
maze_size = 16 |
|
num_actions = 4 |
|
maze_pc_config = dict( |
|
exp_name="maze_pc_seed0", |
|
train_seeds=5, |
|
env=dict( |
|
collector_env_num=8, |
|
evaluator_env_num=5, |
|
n_evaluator_episode=5, |
|
env_id='Maze', |
|
size=maze_size, |
|
wall_type='tunnel', |
|
stop_value=1, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
maze_size=maze_size, |
|
num_actions=num_actions, |
|
max_bfs_steps=100, |
|
model=dict( |
|
obs_shape=[8, maze_size, maze_size], |
|
action_shape=num_actions, |
|
encoder_hidden_size_list=[ |
|
128, |
|
256, |
|
512, |
|
1024, |
|
], |
|
), |
|
learn=dict( |
|
batch_size=32, |
|
learning_rate=0.0005, |
|
train_epoch=100, |
|
optimizer='Adam', |
|
), |
|
eval=dict(evaluator=dict(n_episode=5)), |
|
collect=dict(), |
|
), |
|
) |
|
maze_pc_config = EasyDict(maze_pc_config) |
|
main_config = maze_pc_config |
|
maze_pc_create_config = dict( |
|
env=dict( |
|
type='maze', |
|
import_names=['dizoo.maze.envs.maze_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict(type='pc_bfs'), |
|
) |
|
maze_pc_create_config = EasyDict(maze_pc_create_config) |
|
create_config = maze_pc_create_config |
|
|
|
if __name__ == '__main__': |
|
from ding.entry import serial_pipeline_pc |
|
serial_pipeline_pc([maze_pc_config, maze_pc_create_config], seed=0) |
|
|