zjowowen's picture
init space
079c32c
raw
history blame
2.43 kB
from easydict import EasyDict
qbert_sqil_config = dict(
exp_name='qbert_sqil_seed0',
env=dict(
collector_env_num=8,
evaluator_env_num=8,
n_evaluator_episode=8,
stop_value=30000,
env_id='QbertNoFrameskip-v4',
#'ALE/Qbert-v5' is available. But special setting is needed after gym make.
frame_stack=4
),
policy=dict(
cuda=True,
priority=True,
model=dict(
obs_shape=[4, 84, 84],
action_shape=6,
encoder_hidden_size_list=[128, 128, 512],
),
nstep=3,
discount_factor=0.97, # discount_factor: 0.97-0.99
learn=dict(
update_per_collect=10,
batch_size=32,
learning_rate=0.0001,
target_update_freq=500,
alpha=0.1 # alpha: 0.08-0.12
),
collect=dict(
n_sample=100,
# Users should add their own model path here. Model path should lead to a model.
# Absolute path is recommended.
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``.
model_path='model_path_placeholder'
),
eval=dict(evaluator=dict(eval_freq=4000, )),
other=dict(
eps=dict(
type='exp',
start=1.,
end=0.05,
decay=1000000,
),
replay_buffer=dict(replay_buffer_size=400000, ),
),
),
)
qbert_sqil_config = EasyDict(qbert_sqil_config)
main_config = qbert_sqil_config
qbert_sqil_create_config = dict(
env=dict(
type='atari',
import_names=['dizoo.atari.envs.atari_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='dqn'),
)
qbert_sqil_create_config = EasyDict(qbert_sqil_create_config)
create_config = qbert_sqil_create_config
if __name__ == '__main__':
# or you can enter `ding -m serial_sqil -c qbert_sqil_config.py -s 0`
# then input the config you used to generate your expert model in the path mentioned above
# e.g. qbert_dqn_config.py
from ding.entry import serial_pipeline_sqil
from dizoo.atari.config.serial.qbert import qbert_dqn_config, qbert_dqn_create_config
expert_main_config = qbert_dqn_config
expert_create_config = qbert_dqn_create_config
serial_pipeline_sqil([main_config, create_config], [expert_main_config, expert_create_config], seed=0)