gomoku / DI-engine /dizoo /mujoco /config /ant_sac_config.py
zjowowen's picture
init space
079c32c
raw
history blame
1.98 kB
from easydict import EasyDict
ant_sac_config = dict(
exp_name='ant_sac_seed0',
env=dict(
env_id='Ant-v3',
norm_obs=dict(use_norm=False, ),
norm_reward=dict(use_norm=False, ),
collector_env_num=1,
evaluator_env_num=8,
n_evaluator_episode=8,
stop_value=6000,
manager=dict(shared_memory=False, reset_inplace=True),
),
policy=dict(
cuda=True,
random_collect_size=10000,
model=dict(
obs_shape=111,
action_shape=8,
twin_critic=True,
action_space='reparameterization',
actor_head_hidden_size=256,
critic_head_hidden_size=256,
),
learn=dict(
update_per_collect=1,
batch_size=256,
learning_rate_q=1e-3,
learning_rate_policy=1e-3,
learning_rate_alpha=3e-4,
ignore_done=False,
target_theta=0.005,
discount_factor=0.99,
alpha=0.2,
reparameterization=True,
auto_alpha=False,
),
collect=dict(
n_sample=1,
unroll_len=1,
),
command=dict(),
eval=dict(),
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ),
),
)
ant_sac_config = EasyDict(ant_sac_config)
main_config = ant_sac_config
ant_sac_create_config = dict(
env=dict(
type='mujoco',
import_names=['dizoo.mujoco.envs.mujoco_env'],
),
env_manager=dict(type='base'),
policy=dict(
type='sac',
import_names=['ding.policy.sac'],
),
replay_buffer=dict(type='naive', ),
)
ant_sac_create_config = EasyDict(ant_sac_create_config)
create_config = ant_sac_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial -c ant_sac_config.py -s 0 --env-step 1e7`
from ding.entry import serial_pipeline
serial_pipeline((main_config, create_config), seed=0)