|
from typing import Any, Union, List |
|
import copy |
|
import numpy as np |
|
from numpy import dtype |
|
import gym |
|
from ding.envs import BaseEnv, BaseEnvTimestep |
|
from ding.envs.common.common_function import affine_transform |
|
from ding.torch_utils import to_ndarray, to_list |
|
from ding.utils import ENV_REGISTRY |
|
from .mujoco_multi import MujocoMulti |
|
|
|
|
|
@ENV_REGISTRY.register('mujoco_multi') |
|
class MujocoEnv(BaseEnv): |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
self._cfg = cfg |
|
self._init_flag = False |
|
|
|
def reset(self) -> np.ndarray: |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._cfg.seed = self._seed + np_seed |
|
elif hasattr(self, '_seed'): |
|
self._cfg.seed = self._seed |
|
if not self._init_flag: |
|
self._env = MujocoMulti(env_args=self._cfg) |
|
self._init_flag = True |
|
obs = self._env.reset() |
|
self._eval_episode_return = 0. |
|
|
|
|
|
|
|
|
|
|
|
self.env_info = self._env.get_env_info() |
|
|
|
|
|
self._num_agents = self.env_info['n_agents'] |
|
self._agents = [i for i in range(self._num_agents)] |
|
self._observation_space = gym.spaces.Dict( |
|
{ |
|
'agent_state': gym.spaces.Box( |
|
low=float("-inf"), high=float("inf"), shape=obs['agent_state'].shape, dtype=np.float32 |
|
), |
|
'global_state': gym.spaces.Box( |
|
low=float("-inf"), high=float("inf"), shape=obs['global_state'].shape, dtype=np.float32 |
|
), |
|
} |
|
) |
|
self._action_space = gym.spaces.Dict({agent: self._env.action_space[agent] for agent in self._agents}) |
|
single_agent_obs_space = self._env.action_space[self._agents[0]] |
|
if isinstance(single_agent_obs_space, gym.spaces.Box): |
|
self._action_dim = single_agent_obs_space.shape |
|
elif isinstance(single_agent_obs_space, gym.spaces.Discrete): |
|
self._action_dim = (single_agent_obs_space.n, ) |
|
else: |
|
raise Exception('Only support `Box` or `Discrte` obs space for single agent.') |
|
self._reward_space = gym.spaces.Dict( |
|
{ |
|
agent: gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(1, ), dtype=np.float32) |
|
for agent in self._agents |
|
} |
|
) |
|
|
|
return obs |
|
|
|
def close(self) -> None: |
|
if self._init_flag: |
|
self._env.close() |
|
self._init_flag = False |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
np.random.seed(self._seed) |
|
|
|
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: |
|
action = to_ndarray(action) |
|
obs, rew, done, info = self._env.step(action) |
|
self._eval_episode_return += rew |
|
rew = to_ndarray([rew]) |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def random_action(self) -> np.ndarray: |
|
random_action = self.action_space.sample() |
|
random_action = to_ndarray([random_action], dtype=np.int64) |
|
return random_action |
|
|
|
@property |
|
def num_agents(self) -> Any: |
|
return self._num_agents |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
return self._reward_space |
|
|
|
def __repr__(self) -> str: |
|
return "DI-engine Multi-agent Mujoco Env({})".format(self._cfg.env_id) |
|
|