gomoku / DI-engine /dizoo /pomdp /envs /atari_wrappers.py
zjowowen's picture
init space
079c32c
raw
history blame
6.75 kB
# Borrow a lot from openai baselines:
# https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
import cv2
import gym
import numpy as np
from collections import deque
from copy import deepcopy
from torch import float32
import matplotlib.pyplot as plt
from ding.envs import RamWrapper, NoopResetWrapper, MaxAndSkipWrapper, EpisodicLifeWrapper, FireResetWrapper, WarpFrameWrapper, ClipRewardWrapper, FrameStackWrapper
class ScaledFloatFrameWrapper(gym.ObservationWrapper):
"""Normalize observations to -1~1.
:param gym.Env env: the environment to wrap.
"""
def __init__(self, env):
super().__init__(env)
low = np.min(env.observation_space.low)
high = np.max(env.observation_space.high)
self.bias = low
self.scale = high - low
self.observation_space = gym.spaces.Box(low=-1., high=1., shape=env.observation_space.shape, dtype=np.float32)
def observation(self, observation):
# use fixed scale and bias temporarily
return (observation - 128) / 128
# return (observation - self.bias) / self.scale
class FrameStackWrapperRam(gym.Wrapper):
"""Stack n_frames last frames.
:param gym.Env env: the environment to wrap.
:param int n_frames: the number of frames to stack.
"""
def __init__(
self,
env,
n_frames,
pomdp={
"noise_scale": 0.01,
"zero_p": 0.2,
"duplicate_p": 0.2,
"reward_noise": 0.01
},
render=False
):
super().__init__(env)
self.n_frames = n_frames
self.n_dims = env.observation_space.shape[0]
self._pomdp = pomdp
self._render = render
self.frames = deque([], maxlen=n_frames)
self._images = deque([], maxlen=n_frames)
self.viewer = None
shape = (n_frames * self.n_dims, )
self.observation_space = gym.spaces.Box(
low=np.min(env.observation_space.low),
high=np.max(env.observation_space.high),
shape=shape,
dtype=env.observation_space.dtype
)
def reset(self):
obs = self.env.reset()
for _ in range(self.n_frames):
self.frames.append(obs)
return self._get_ob()
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.frames.append(obs)
reward = reward + self._pomdp["reward_noise"] * np.random.randn()
if self._render:
_img = self.env.unwrapped._get_image()
_img = _img.mean(axis=-1, keepdims=True).astype(np.uint8)
self._images.append(_img)
self.render()
return self._get_ob(), reward, done, info
def render(self):
from gym.envs.classic_control import rendering
state = np.stack(self._images, axis=0)
obs = self._pomdp_preprocess(state, img=True).astype(np.uint8)
obs = np.tile(obs[-1], (1, 1, 3))
if self.viewer is None:
self.viewer = rendering.SimpleImageViewer()
self.viewer.imshow(obs)
return self.viewer.isopen
def _get_ob(self):
# the original wrapper use `LazyFrames` but since we use np buffer,
# it has no effect
state = np.stack(self.frames, axis=0)
obs = self._pomdp_preprocess(state)
return obs.flatten()
def _pomdp_preprocess(self, state, img=False):
obs = deepcopy(state)
# POMDP process
if np.random.random() > (1 - self._pomdp["duplicate_p"]):
update_end_point = np.random.randint(
1, self.n_frames
) # choose a point from that point we can't get new observation
_s = (self.n_frames - update_end_point, 1, 1, 1)
obs[update_end_point:, ] = np.tile(obs[update_end_point, ], _s)
if img:
pomdp_noise_mask = self._pomdp["noise_scale"] * np.random.randn(*obs.shape) * 128
else:
pomdp_noise_mask = self._pomdp["noise_scale"] * np.random.randn(*obs.shape)
# Flickering Atari game
obs = obs * int(np.random.random() > self._pomdp["zero_p"]) + pomdp_noise_mask
return obs.astype(np.float32)
def wrap_deepmind(
env_id,
episode_life=True,
clip_rewards=True,
pomdp={},
frame_stack=4,
scale=True,
warp_frame=True,
use_ram=False,
render=False,
only_info=False
):
"""Configure environment for DeepMind-style Atari. The observation is
channel-first: (c, h, w) instead of (h, w, c).
:param str env_id: the atari environment id.
:param bool episode_life: wrap the episode life wrapper.
:param bool clip_rewards: wrap the reward clipping wrapper.
:param int frame_stack: wrap the frame stacking wrapper.
:param bool scale: wrap the scaling observation wrapper.
:param bool warp_frame: wrap the grayscale + resize observation wrapper.
:param float pomdp: parameter to control POMDP prepropress,
:return: the wrapped atari environment.
"""
assert 'NoFrameskip' in env_id
if not only_info:
env = gym.make(env_id)
env = RamWrapper(env)
env = NoopResetWrapper(env, noop_max=30)
env = MaxAndSkipWrapper(env, skip=4)
if episode_life:
env = EpisodicLifeWrapper(env)
if 'FIRE' in env.unwrapped.get_action_meanings():
env = FireResetWrapper(env)
if warp_frame:
env = WarpFrameWrapper(env)
if scale:
env = ScaledFloatFrameWrapper(env)
if clip_rewards:
env = ClipRewardWrapper(env)
if frame_stack:
if use_ram:
env = FrameStackWrapperRam(env, frame_stack, pomdp, render)
else:
env = FrameStackWrapper(env, frame_stack)
return env
else:
wrapper_info = RamWrapper.__name__ + '\n'
wrapper_info += NoopResetWrapper.__name__ + '\n'
wrapper_info += MaxAndSkipWrapper.__name__ + '\n'
if episode_life:
wrapper_info = EpisodicLifeWrapper.__name__ + '\n'
if 'Pong' in env_id or 'Qbert' in env_id or 'SpaceInvader' in env_id or 'Montezuma' in env_id:
wrapper_info = FireResetWrapper.__name__ + '\n'
if warp_frame:
wrapper_info = WarpFrameWrapper.__name__ + '\n'
if scale:
wrapper_info = ScaledFloatFrameWrapper.__name__ + '\n'
if clip_rewards:
wrapper_info = ClipRewardWrapper.__name__ + '\n'
if frame_stack:
if use_ram:
wrapper_info = FrameStackWrapperRam.__name__ + '\n'
else:
wrapper_info = FrameStackWrapper.__name__ + '\n'
return wrapper_info