|
from easydict import EasyDict |
|
|
|
bigfish_plr_config = dict( |
|
exp_name='bigfish_plr_seed1', |
|
env=dict( |
|
is_train=True, |
|
control_level=False, |
|
env_id='bigfish', |
|
collector_env_num=64, |
|
evaluator_env_num=10, |
|
n_evaluator_episode=50, |
|
stop_value=40, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
model=dict( |
|
obs_shape=[3, 64, 64], |
|
action_shape=15, |
|
encoder_hidden_size_list=[16, 32, 32], |
|
actor_head_hidden_size=256, |
|
critic_head_hidden_size=256, |
|
impala_cnn_encoder=True, |
|
), |
|
learn=dict( |
|
learning_rate=0.0005, |
|
actor_epoch_per_collect=1, |
|
critic_epoch_per_collect=1, |
|
value_norm=True, |
|
batch_size=16384, |
|
value_weight=0.5, |
|
entropy_weight=0.01, |
|
clip_ratio=0.2, |
|
aux_freq=1, |
|
), |
|
collect=dict(n_sample=16384, ), |
|
eval=dict(evaluator=dict(eval_freq=96, )), |
|
other=dict(), |
|
), |
|
level_replay=dict( |
|
strategy='min_margin', |
|
score_transform='rank', |
|
temperature=0.1, |
|
), |
|
) |
|
bigfish_plr_config = EasyDict(bigfish_plr_config) |
|
main_config = bigfish_plr_config |
|
|
|
bigfish_plr_create_config = dict( |
|
env=dict( |
|
type='procgen', |
|
import_names=['dizoo.procgen.envs.procgen_env'], |
|
), |
|
env_manager=dict(type='subprocess', ), |
|
policy=dict(type='ppg'), |
|
) |
|
bigfish_plr_create_config = EasyDict(bigfish_plr_create_config) |
|
create_config = bigfish_plr_create_config |
|
|
|
if __name__ == "__main__": |
|
|
|
from ding.entry.serial_entry_plr import serial_pipeline_plr |
|
serial_pipeline_plr([main_config, create_config], seed=0) |
|
|