|
from typing import Union, Optional, Tuple |
|
import os |
|
import torch |
|
from functools import partial |
|
from tensorboardX import SummaryWriter |
|
from copy import deepcopy |
|
from torch.utils.data import DataLoader |
|
|
|
from ding.envs import get_vec_env_setting, create_env_manager |
|
from ding.worker import BaseLearner, InteractionSerialEvaluator |
|
from ding.config import read_config, compile_config |
|
from ding.policy import create_policy |
|
from ding.utils import set_pkg_seed |
|
from ding.utils.data import NaiveRLDataset |
|
|
|
|
|
def serial_pipeline_bc( |
|
input_cfg: Union[str, Tuple[dict, dict]], |
|
seed: int, |
|
data_path: str, |
|
model: Optional[torch.nn.Module] = None, |
|
max_iter=int(1e6), |
|
) -> Union['Policy', bool]: |
|
r""" |
|
Overview: |
|
Serial pipeline entry of imitation learning. |
|
Arguments: |
|
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ |
|
``str`` type means config file path. \ |
|
``Tuple[dict, dict]`` type means [user_config, create_cfg]. |
|
- seed (:obj:`int`): Random seed. |
|
- data_path (:obj:`str`): Path of training data. |
|
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. |
|
Returns: |
|
- policy (:obj:`Policy`): Converged policy. |
|
- convergence (:obj:`bool`): whether il training is converged |
|
""" |
|
cont = input_cfg[0].policy.continuous |
|
|
|
if isinstance(input_cfg, str): |
|
cfg, create_cfg = read_config(input_cfg) |
|
else: |
|
cfg, create_cfg = deepcopy(input_cfg) |
|
cfg = compile_config(cfg, seed=seed, auto=True, create_cfg=create_cfg) |
|
|
|
|
|
env_fn, _, evaluator_env_cfg = get_vec_env_setting(cfg.env) |
|
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) |
|
|
|
evaluator_env.seed(cfg.seed, dynamic_seed=False) |
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'eval']) |
|
|
|
|
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
dataset = NaiveRLDataset(data_path) |
|
dataloader = DataLoader(dataset[:-len(dataset) // 10], cfg.policy.learn.batch_size, collate_fn=lambda x: x) |
|
eval_loader = DataLoader( |
|
dataset[-len(dataset) // 10:], |
|
cfg.policy.learn.batch_size, |
|
) |
|
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) |
|
evaluator = InteractionSerialEvaluator( |
|
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
|
|
|
|
|
|
learner.call_hook('before_run') |
|
stop = False |
|
iter_cnt = 0 |
|
for epoch in range(cfg.policy.learn.train_epoch): |
|
|
|
loss_list = [] |
|
for _, bat in enumerate(eval_loader): |
|
res = policy._forward_eval(bat['obs']) |
|
if cont: |
|
loss_list.append(torch.nn.L1Loss()(res['action'], bat['action'].squeeze(-1)).item()) |
|
else: |
|
res = torch.argmax(res['logit'], dim=1) |
|
loss_list.append(torch.sum(res == bat['action'].squeeze(-1)).item() / bat['action'].shape[0]) |
|
if cont: |
|
label = 'validation_loss' |
|
else: |
|
label = 'validation_acc' |
|
tb_logger.add_scalar(label, sum(loss_list) / len(loss_list), iter_cnt) |
|
for i, train_data in enumerate(dataloader): |
|
if evaluator.should_eval(learner.train_iter): |
|
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter) |
|
if stop: |
|
break |
|
learner.train(train_data) |
|
iter_cnt += 1 |
|
if iter_cnt >= max_iter: |
|
stop = True |
|
break |
|
if stop: |
|
break |
|
|
|
learner.call_hook('after_run') |
|
print('final reward is: {}'.format(reward)) |
|
return policy, stop |
|
|