|
from typing import Union, Optional, List, Any, Tuple |
|
import torch |
|
import os |
|
from functools import partial |
|
|
|
from tensorboardX import SummaryWriter |
|
from copy import deepcopy |
|
|
|
from ding.worker import BaseLearner, InteractionSerialEvaluator, BaseSerialCommander, create_buffer, \ |
|
get_buffer_cls, create_serial_collector |
|
from ding.world_model import WorldModel |
|
from ding.worker import IBuffer |
|
from ding.envs import get_vec_env_setting, create_env_manager |
|
from ding.config import read_config, compile_config |
|
from ding.utils import set_pkg_seed, deep_merge_dicts |
|
from ding.policy import create_policy |
|
from ding.world_model import create_world_model |
|
from ding.entry.utils import random_collect |
|
|
|
|
|
def mbrl_entry_setup( |
|
input_cfg: Union[str, Tuple[dict, dict]], |
|
seed: int = 0, |
|
env_setting: Optional[List[Any]] = None, |
|
model: Optional[torch.nn.Module] = None, |
|
) -> Tuple: |
|
if isinstance(input_cfg, str): |
|
cfg, create_cfg = read_config(input_cfg) |
|
else: |
|
cfg, create_cfg = deepcopy(input_cfg) |
|
create_cfg.policy.type = create_cfg.policy.type + '_command' |
|
env_fn = None if env_setting is None else env_setting[0] |
|
cfg = compile_config(cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True) |
|
|
|
if env_setting is None: |
|
env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) |
|
else: |
|
env_fn, collector_env_cfg, evaluator_env_cfg = env_setting |
|
|
|
collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) |
|
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) |
|
|
|
collector_env.seed(cfg.seed) |
|
evaluator_env.seed(cfg.seed, dynamic_seed=False) |
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
|
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
|
|
|
|
world_model = create_world_model(cfg.world_model, env_fn(cfg.env), tb_logger) |
|
|
|
|
|
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval', 'command']) |
|
|
|
|
|
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) |
|
collector = create_serial_collector( |
|
cfg.policy.collect.collector, |
|
env=collector_env, |
|
policy=policy.collect_mode, |
|
tb_logger=tb_logger, |
|
exp_name=cfg.exp_name |
|
) |
|
evaluator = InteractionSerialEvaluator( |
|
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
env_buffer = create_buffer(cfg.policy.other.replay_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name) |
|
commander = BaseSerialCommander( |
|
cfg.policy.other.commander, learner, collector, evaluator, env_buffer, policy.command_mode |
|
) |
|
|
|
return ( |
|
cfg, |
|
policy, |
|
world_model, |
|
env_buffer, |
|
learner, |
|
collector, |
|
collector_env, |
|
evaluator, |
|
commander, |
|
tb_logger, |
|
) |
|
|
|
|
|
def create_img_buffer( |
|
cfg: dict, input_cfg: Union[str, Tuple[dict, dict]], world_model: WorldModel, tb_logger: 'SummaryWriter' |
|
) -> IBuffer: |
|
if isinstance(input_cfg, str): |
|
_, create_cfg = read_config(input_cfg) |
|
else: |
|
_, create_cfg = input_cfg |
|
img_buffer_cfg = cfg.world_model.other.imagination_buffer |
|
img_buffer_cfg.update(create_cfg.imagination_buffer) |
|
buffer_cls = get_buffer_cls(img_buffer_cfg) |
|
cfg.world_model.other.imagination_buffer.update(deep_merge_dicts(buffer_cls.default_config(), img_buffer_cfg)) |
|
if img_buffer_cfg.type == 'elastic': |
|
img_buffer_cfg.set_buffer_size = world_model.buffer_size_scheduler |
|
img_buffer = create_buffer(cfg.world_model.other.imagination_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name) |
|
return img_buffer |
|
|
|
|
|
def serial_pipeline_dyna( |
|
input_cfg: Union[str, Tuple[dict, dict]], |
|
seed: int = 0, |
|
env_setting: Optional[List[Any]] = None, |
|
model: Optional[torch.nn.Module] = None, |
|
max_train_iter: Optional[int] = int(1e10), |
|
max_env_step: Optional[int] = int(1e10), |
|
) -> 'Policy': |
|
""" |
|
Overview: |
|
Serial pipeline entry for dyna-style model-based RL. |
|
Arguments: |
|
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ |
|
``str`` type means config file path. \ |
|
``Tuple[dict, dict]`` type means [user_config, create_cfg]. |
|
- seed (:obj:`int`): Random seed. |
|
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ |
|
``BaseEnv`` subclass, collector env config, and evaluator env config. |
|
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. |
|
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. |
|
- max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. |
|
Returns: |
|
- policy (:obj:`Policy`): Converged policy. |
|
""" |
|
cfg, policy, world_model, env_buffer, learner, collector, collector_env, evaluator, commander, tb_logger = \ |
|
mbrl_entry_setup(input_cfg, seed, env_setting, model) |
|
|
|
img_buffer = create_img_buffer(cfg, input_cfg, world_model, tb_logger) |
|
|
|
learner.call_hook('before_run') |
|
|
|
if cfg.policy.get('random_collect_size', 0) > 0: |
|
random_collect(cfg.policy, policy, collector, collector_env, commander, env_buffer) |
|
|
|
while True: |
|
collect_kwargs = commander.step() |
|
|
|
if evaluator.should_eval(collector.envstep): |
|
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) |
|
if stop: |
|
break |
|
|
|
|
|
data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) |
|
env_buffer.push(data, cur_collector_envstep=collector.envstep) |
|
|
|
|
|
if world_model.should_eval(collector.envstep): |
|
world_model.eval(env_buffer, collector.envstep, learner.train_iter) |
|
if world_model.should_train(collector.envstep): |
|
world_model.train(env_buffer, collector.envstep, learner.train_iter) |
|
world_model.fill_img_buffer( |
|
policy.collect_mode, env_buffer, img_buffer, collector.envstep, learner.train_iter |
|
) |
|
|
|
for i in range(cfg.policy.learn.update_per_collect): |
|
batch_size = learner.policy.get_attribute('batch_size') |
|
train_data = world_model.sample(env_buffer, img_buffer, batch_size, learner.train_iter) |
|
learner.train(train_data, collector.envstep) |
|
|
|
if cfg.policy.on_policy: |
|
|
|
env_buffer.clear() |
|
img_buffer.clear() |
|
|
|
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: |
|
break |
|
|
|
learner.call_hook('after_run') |
|
|
|
return policy |
|
|
|
|
|
def serial_pipeline_dream( |
|
input_cfg: Union[str, Tuple[dict, dict]], |
|
seed: int = 0, |
|
env_setting: Optional[List[Any]] = None, |
|
model: Optional[torch.nn.Module] = None, |
|
max_train_iter: Optional[int] = int(1e10), |
|
max_env_step: Optional[int] = int(1e10), |
|
) -> 'Policy': |
|
""" |
|
Overview: |
|
Serial pipeline entry for dreamer-style model-based RL. |
|
Arguments: |
|
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ |
|
``str`` type means config file path. \ |
|
``Tuple[dict, dict]`` type means [user_config, create_cfg]. |
|
- seed (:obj:`int`): Random seed. |
|
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ |
|
``BaseEnv`` subclass, collector env config, and evaluator env config. |
|
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. |
|
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. |
|
- max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. |
|
Returns: |
|
- policy (:obj:`Policy`): Converged policy. |
|
""" |
|
cfg, policy, world_model, env_buffer, learner, collector, collector_env, evaluator, commander, tb_logger = \ |
|
mbrl_entry_setup(input_cfg, seed, env_setting, model) |
|
|
|
learner.call_hook('before_run') |
|
|
|
if cfg.policy.get('random_collect_size', 0) > 0: |
|
random_collect(cfg.policy, policy, collector, collector_env, commander, env_buffer) |
|
|
|
while True: |
|
collect_kwargs = commander.step() |
|
|
|
if evaluator.should_eval(collector.envstep): |
|
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) |
|
if stop: |
|
break |
|
|
|
|
|
data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) |
|
env_buffer.push(data, cur_collector_envstep=collector.envstep) |
|
|
|
|
|
if world_model.should_eval(collector.envstep): |
|
world_model.eval(env_buffer, collector.envstep, learner.train_iter) |
|
if world_model.should_train(collector.envstep): |
|
world_model.train(env_buffer, collector.envstep, learner.train_iter) |
|
|
|
update_per_collect = cfg.policy.learn.update_per_collect // world_model.rollout_length_scheduler( |
|
collector.envstep |
|
) |
|
update_per_collect = max(1, update_per_collect) |
|
for i in range(update_per_collect): |
|
batch_size = learner.policy.get_attribute('batch_size') |
|
train_data = env_buffer.sample(batch_size, learner.train_iter) |
|
|
|
|
|
learner.train( |
|
train_data, collector.envstep, policy_kwargs=dict(world_model=world_model, envstep=collector.envstep) |
|
) |
|
|
|
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: |
|
break |
|
|
|
learner.call_hook('after_run') |
|
|
|
return policy |
|
|
|
|
|
def serial_pipeline_dreamer( |
|
input_cfg: Union[str, Tuple[dict, dict]], |
|
seed: int = 0, |
|
env_setting: Optional[List[Any]] = None, |
|
model: Optional[torch.nn.Module] = None, |
|
max_train_iter: Optional[int] = int(1e10), |
|
max_env_step: Optional[int] = int(1e10), |
|
) -> 'Policy': |
|
""" |
|
Overview: |
|
Serial pipeline entry for dreamerv3. |
|
Arguments: |
|
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ |
|
``str`` type means config file path. \ |
|
``Tuple[dict, dict]`` type means [user_config, create_cfg]. |
|
- seed (:obj:`int`): Random seed. |
|
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ |
|
``BaseEnv`` subclass, collector env config, and evaluator env config. |
|
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. |
|
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. |
|
- max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. |
|
Returns: |
|
- policy (:obj:`Policy`): Converged policy. |
|
""" |
|
cfg, policy, world_model, env_buffer, learner, collector, collector_env, evaluator, commander, tb_logger = \ |
|
mbrl_entry_setup(input_cfg, seed, env_setting, model) |
|
|
|
learner.call_hook('before_run') |
|
|
|
|
|
if cfg.policy.get('random_collect_size', 0) > 0: |
|
cfg.policy.random_collect_size = cfg.policy.random_collect_size // cfg.policy.collect.unroll_len |
|
random_collect(cfg.policy, policy, collector, collector_env, commander, env_buffer) |
|
|
|
while True: |
|
collect_kwargs = commander.step() |
|
|
|
if evaluator.should_eval(collector.envstep): |
|
stop, reward = evaluator.eval( |
|
learner.save_checkpoint, |
|
learner.train_iter, |
|
collector.envstep, |
|
policy_kwargs=dict(world_model=world_model) |
|
) |
|
if stop: |
|
break |
|
|
|
|
|
steps = ( |
|
cfg.world_model.pretrain |
|
if world_model.should_pretrain() else int(world_model.should_train(collector.envstep)) |
|
) |
|
for _ in range(steps): |
|
batch_size = learner.policy.get_attribute('batch_size') |
|
batch_length = cfg.policy.learn.batch_length |
|
post, context = world_model.train( |
|
env_buffer, collector.envstep, learner.train_iter, batch_size, batch_length |
|
) |
|
|
|
start = post |
|
|
|
learner.train( |
|
start, collector.envstep, policy_kwargs=dict(world_model=world_model, envstep=collector.envstep) |
|
) |
|
|
|
|
|
data = collector.collect( |
|
train_iter=learner.train_iter, |
|
policy_kwargs=dict(world_model=world_model, envstep=collector.envstep, **collect_kwargs) |
|
) |
|
env_buffer.push(data, cur_collector_envstep=collector.envstep) |
|
|
|
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: |
|
break |
|
|
|
learner.call_hook('after_run') |
|
|
|
return policy |
|
|