|
from typing import Union, Optional, List, Any, Tuple |
|
import os |
|
import torch |
|
from functools import partial |
|
from tensorboardX import SummaryWriter |
|
from copy import deepcopy |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
|
|
from ding.envs import get_vec_env_setting, create_env_manager |
|
from ding.worker import BaseLearner, InteractionSerialEvaluator |
|
from ding.config import read_config, compile_config |
|
from ding.policy import create_policy |
|
from ding.utils import set_pkg_seed, get_world_size, get_rank |
|
from ding.utils.data import create_dataset |
|
|
|
|
|
def serial_pipeline_offline( |
|
input_cfg: Union[str, Tuple[dict, dict]], |
|
seed: int = 0, |
|
env_setting: Optional[List[Any]] = None, |
|
model: Optional[torch.nn.Module] = None, |
|
max_train_iter: Optional[int] = int(1e10), |
|
) -> 'Policy': |
|
""" |
|
Overview: |
|
Serial pipeline entry. |
|
Arguments: |
|
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ |
|
``str`` type means config file path. \ |
|
``Tuple[dict, dict]`` type means [user_config, create_cfg]. |
|
- seed (:obj:`int`): Random seed. |
|
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ |
|
``BaseEnv`` subclass, collector env config, and evaluator env config. |
|
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. |
|
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. |
|
Returns: |
|
- policy (:obj:`Policy`): Converged policy. |
|
""" |
|
if isinstance(input_cfg, str): |
|
cfg, create_cfg = read_config(input_cfg) |
|
else: |
|
cfg, create_cfg = deepcopy(input_cfg) |
|
create_cfg.policy.type = create_cfg.policy.type + '_command' |
|
cfg = compile_config(cfg, seed=seed, auto=True, create_cfg=create_cfg) |
|
|
|
|
|
dataset = create_dataset(cfg) |
|
sampler, shuffle = None, True |
|
if get_world_size() > 1: |
|
sampler, shuffle = DistributedSampler(dataset), False |
|
dataloader = DataLoader( |
|
dataset, |
|
|
|
|
|
|
|
|
|
|
|
cfg.policy.learn.batch_size // get_world_size(), |
|
|
|
shuffle=shuffle, |
|
sampler=sampler, |
|
collate_fn=lambda x: x, |
|
pin_memory=cfg.policy.cuda, |
|
) |
|
|
|
try: |
|
if cfg.env.norm_obs.use_norm and cfg.env.norm_obs.offline_stats.use_offline_stats: |
|
cfg.env.norm_obs.offline_stats.update({'mean': dataset.mean, 'std': dataset.std}) |
|
except (KeyError, AttributeError): |
|
pass |
|
env_fn, _, evaluator_env_cfg = get_vec_env_setting(cfg.env, collect=False) |
|
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) |
|
|
|
evaluator_env.seed(cfg.seed, dynamic_seed=False) |
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'eval']) |
|
if cfg.policy.collect.data_type == 'diffuser_traj': |
|
policy.init_data_normalizer(dataset.normalizer) |
|
|
|
if hasattr(policy, 'set_statistic'): |
|
|
|
policy.set_statistic(dataset.statistics) |
|
|
|
|
|
if get_rank() == 0: |
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
else: |
|
tb_logger = None |
|
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) |
|
evaluator = InteractionSerialEvaluator( |
|
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
|
|
|
|
|
|
|
|
learner.call_hook('before_run') |
|
stop = False |
|
|
|
for epoch in range(cfg.policy.learn.train_epoch): |
|
if get_world_size() > 1: |
|
dataloader.sampler.set_epoch(epoch) |
|
for train_data in dataloader: |
|
learner.train(train_data) |
|
|
|
|
|
if evaluator.should_eval(learner.train_iter): |
|
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter) |
|
|
|
if stop or learner.train_iter >= max_train_iter: |
|
stop = True |
|
break |
|
|
|
learner.call_hook('after_run') |
|
print('final reward is: {}'.format(reward)) |
|
return policy, stop |
|
|