|
from copy import deepcopy |
|
import pytest |
|
import torch.nn.functional as F |
|
from typing import Tuple, List, Dict, Any |
|
import torch |
|
from collections import namedtuple |
|
import os |
|
|
|
from ding.torch_utils import to_device |
|
from ding.rl_utils import get_train_sample, get_nstep_return_data |
|
from ding.entry import serial_pipeline_bc, collect_demo_data, serial_pipeline |
|
from ding.policy import PPOOffPolicy, BehaviourCloningPolicy |
|
from ding.policy.common_utils import default_preprocess_learn |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import default_collate, default_decollate |
|
from dizoo.classic_control.cartpole.config import cartpole_dqn_config, cartpole_dqn_create_config, \ |
|
cartpole_ppo_offpolicy_config, cartpole_ppo_offpolicy_create_config |
|
from dizoo.classic_control.pendulum.config import pendulum_sac_config, pendulum_sac_create_config |
|
|
|
|
|
@POLICY_REGISTRY.register('ppo_bc') |
|
class PPOILPolicy(PPOOffPolicy): |
|
|
|
def _forward_learn(self, data: dict) -> dict: |
|
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.get('ignore_done', False), use_nstep=False) |
|
self._learn_model.train() |
|
output = self._learn_model.forward(data['obs'], mode='compute_actor_critic') |
|
value_loss = F.mse_loss(output['value'], data['value']) |
|
policy_loss = F.smooth_l1_loss(output['logit'], data['logit']) |
|
total_loss = value_loss + policy_loss |
|
self._optimizer.zero_grad() |
|
total_loss.backward() |
|
self._optimizer.step() |
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
'total_loss': total_loss.item(), |
|
'policy_loss': policy_loss.item(), |
|
'value_loss': value_loss.item(), |
|
} |
|
|
|
def _forward_eval(self, data): |
|
if isinstance(data, dict): |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
o = default_decollate(self._eval_model.forward(data, mode='compute_actor')) |
|
return {i: d for i, d in zip(data_id, o)} |
|
return self._model(data, mode='compute_actor') |
|
|
|
def _monitor_vars_learn(self) -> list: |
|
return super()._monitor_vars_learn() + ['policy_loss', 'value_loss'] |
|
|
|
|
|
@pytest.mark.unittest |
|
def test_serial_pipeline_bc_ppo(): |
|
|
|
train_config = [deepcopy(cartpole_ppo_offpolicy_config), deepcopy(cartpole_ppo_offpolicy_create_config)] |
|
train_config[0].exp_name = 'test_serial_pipeline_bc_ppo' |
|
expert_policy = serial_pipeline(train_config, seed=0) |
|
|
|
|
|
collect_count = 10000 |
|
expert_data_path = 'expert_data_ppo_bc.pkl' |
|
state_dict = expert_policy.collect_mode.state_dict() |
|
collect_config = [deepcopy(cartpole_ppo_offpolicy_config), deepcopy(cartpole_ppo_offpolicy_create_config)] |
|
collect_config[0].exp_name = 'test_serial_pipeline_bc_ppo_collect' |
|
collect_demo_data( |
|
collect_config, seed=0, state_dict=state_dict, expert_data_path=expert_data_path, collect_count=collect_count |
|
) |
|
|
|
|
|
il_config = [deepcopy(cartpole_ppo_offpolicy_config), deepcopy(cartpole_ppo_offpolicy_create_config)] |
|
il_config[0].policy.eval.evaluator.multi_gpu = False |
|
il_config[0].policy.learn.train_epoch = 20 |
|
il_config[1].policy.type = 'ppo_bc' |
|
il_config[0].policy.continuous = False |
|
il_config[0].exp_name = 'test_serial_pipeline_bc_ppo_il' |
|
_, converge_stop_flag = serial_pipeline_bc(il_config, seed=314, data_path=expert_data_path) |
|
assert converge_stop_flag |
|
|
|
os.popen('rm -rf ' + expert_data_path) |
|
|
|
|
|
@POLICY_REGISTRY.register('dqn_bc') |
|
class DQNILPolicy(BehaviourCloningPolicy): |
|
|
|
def _forward_learn(self, data: dict) -> dict: |
|
return super()._forward_learn(data) |
|
|
|
def _forward_collect(self, data: dict, eps: float): |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(data, eps=eps) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> Dict[str, Any]: |
|
ret = super()._process_transition(obs, model_output, timestep) |
|
ret['next_obs'] = timestep.obs |
|
return ret |
|
|
|
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: |
|
super()._get_train_sample(data) |
|
data = get_nstep_return_data(data, 1, gamma=0.99) |
|
return get_train_sample(data, unroll_len=1) |
|
|
|
def _forward_eval(self, data: dict) -> dict: |
|
if isinstance(data, dict): |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
o = default_decollate(self._eval_model.forward(data)) |
|
return {i: d for i, d in zip(data_id, o)} |
|
return self._model(data) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
return 'dqn', ['ding.model.template.q_learning'] |
|
|
|
|
|
@pytest.mark.unittest |
|
def test_serial_pipeline_bc_dqn(): |
|
|
|
train_config = [deepcopy(cartpole_dqn_config), deepcopy(cartpole_dqn_create_config)] |
|
expert_policy = serial_pipeline(train_config, seed=0) |
|
|
|
|
|
collect_count = 10000 |
|
expert_data_path = 'expert_data_dqn.pkl' |
|
state_dict = expert_policy.collect_mode.state_dict() |
|
collect_config = [deepcopy(cartpole_dqn_config), deepcopy(cartpole_dqn_create_config)] |
|
collect_config[1].policy.type = 'dqn_bc' |
|
collect_config[0].policy.continuous = False |
|
collect_config[0].policy.other.eps = 0 |
|
collect_demo_data( |
|
collect_config, seed=0, state_dict=state_dict, expert_data_path=expert_data_path, collect_count=collect_count |
|
) |
|
|
|
|
|
il_config = [deepcopy(cartpole_dqn_config), deepcopy(cartpole_dqn_create_config)] |
|
il_config[0].policy.learn.train_epoch = 15 |
|
il_config[1].policy.type = 'dqn_bc' |
|
il_config[0].policy.continuous = False |
|
il_config[0].env.stop_value = 50 |
|
il_config[0].policy.eval.evaluator.multi_gpu = False |
|
_, converge_stop_flag = serial_pipeline_bc(il_config, seed=314, data_path=expert_data_path) |
|
assert converge_stop_flag |
|
os.popen('rm -rf ' + expert_data_path) |
|
|
|
|
|
@pytest.mark.unittest |
|
def test_serial_pipeline_bc_sac(): |
|
|
|
train_config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)] |
|
expert_policy = serial_pipeline(train_config, seed=0, max_train_iter=10) |
|
|
|
|
|
collect_count = 10000 |
|
expert_data_path = 'expert_data_sac.pkl' |
|
state_dict = expert_policy.collect_mode.state_dict() |
|
collect_config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)] |
|
collect_demo_data( |
|
collect_config, seed=0, state_dict=state_dict, expert_data_path=expert_data_path, collect_count=collect_count |
|
) |
|
|
|
|
|
il_config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)] |
|
il_config[0].policy.learn.train_epoch = 15 |
|
il_config[1].policy.type = 'bc' |
|
il_config[0].policy.continuous = True |
|
il_config[0].env.stop_value = 50 |
|
il_config[0].policy.model = dict( |
|
obs_shape=3, |
|
action_shape=1, |
|
action_space='regression', |
|
actor_head_hidden_size=128, |
|
) |
|
il_config[0].policy.loss_type = 'l1_loss' |
|
il_config[0].policy.learn.learning_rate = 1e-5 |
|
il_config[0].policy.eval.evaluator.multi_gpu = False |
|
il_config[1].policy.type = 'bc' |
|
_, converge_stop_flag = serial_pipeline_bc(il_config, seed=314, data_path=expert_data_path, max_iter=10) |
|
os.popen('rm -rf ' + expert_data_path) |
|
|