|
import gym |
|
import torch |
|
from ditk import logging |
|
from ding.model import DQN |
|
from ding.policy import DQNPolicy |
|
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 |
|
from ding.config import compile_config |
|
from ding.framework import task |
|
from ding.framework.context import OnlineRLContext |
|
from ding.framework.middleware import interaction_evaluator |
|
from ding.utils import set_pkg_seed |
|
from dizoo.classic_control.cartpole.config.cartpole_dqn_config import main_config, create_config |
|
|
|
|
|
def main(): |
|
logging.getLogger().setLevel(logging.INFO) |
|
main_config.exp_name = 'cartpole_dqn_eval' |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True) |
|
with task.start(async_mode=False, ctx=OnlineRLContext()): |
|
evaluator_env = BaseEnvManagerV2( |
|
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
|
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
model = DQN(**cfg.policy.model) |
|
|
|
|
|
|
|
|
|
pretrained_state_dict = torch.load('cartpole_dqn_seed0/ckpt/final.pth.tar', map_location='cpu')['model'] |
|
model.load_state_dict(pretrained_state_dict) |
|
|
|
policy = DQNPolicy(cfg.policy, model=model) |
|
|
|
|
|
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) |
|
task.run(max_step=1) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|