|
import gym |
|
from ditk import logging |
|
from ding.model import QACEnsemble |
|
from ding.policy import EDACPolicy |
|
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 |
|
from ding.data import create_dataset |
|
from ding.config import compile_config |
|
from ding.framework import task, ding_init |
|
from ding.framework.context import OfflineRLContext |
|
from ding.framework.middleware import interaction_evaluator, trainer, CkptSaver, offline_data_fetcher, offline_logger |
|
from ding.utils import set_pkg_seed |
|
from dizoo.d4rl.envs import D4RLEnv |
|
from dizoo.d4rl.config.halfcheetah_medium_edac_config import main_config, create_config |
|
|
|
|
|
def main(): |
|
|
|
|
|
logging.getLogger().setLevel(logging.INFO) |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True) |
|
ding_init(cfg) |
|
with task.start(async_mode=False, ctx=OfflineRLContext()): |
|
evaluator_env = BaseEnvManagerV2( |
|
env_fn=[lambda: D4RLEnv(cfg.env) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager |
|
) |
|
|
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
dataset = create_dataset(cfg) |
|
model = QACEnsemble(**cfg.policy.model) |
|
policy = EDACPolicy(cfg.policy, model=model) |
|
|
|
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) |
|
task.use(offline_data_fetcher(cfg, dataset)) |
|
task.use(trainer(cfg, policy.learn_mode)) |
|
task.use(CkptSaver(policy, cfg.exp_name, train_freq=1e4)) |
|
task.use(offline_logger()) |
|
task.run() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|