|
from ditk import logging |
|
import torch |
|
from ding.model import ContinuousQAC |
|
from ding.policy import SQILSACPolicy |
|
from ding.envs import BaseEnvManagerV2 |
|
from ding.data import DequeBuffer |
|
from ding.config import compile_config |
|
from ding.framework import task |
|
from ding.framework.context import OnlineRLContext |
|
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, \ |
|
CkptSaver, sqil_data_pusher, termination_checker |
|
from ding.utils import set_pkg_seed |
|
from dizoo.classic_control.pendulum.envs.pendulum_env import PendulumEnv |
|
from dizoo.classic_control.pendulum.config.pendulum_sac_config import main_config as ex_main_config |
|
from dizoo.classic_control.pendulum.config.pendulum_sac_config import create_config as ex_create_config |
|
from dizoo.classic_control.pendulum.config.pendulum_sqil_sac_config import main_config, create_config |
|
|
|
|
|
def main(): |
|
logging.getLogger().setLevel(logging.INFO) |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True) |
|
expert_cfg = compile_config(ex_main_config, create_cfg=ex_create_config, auto=True) |
|
|
|
expert_cfg.policy.collect.n_sample = cfg.policy.collect.n_sample |
|
with task.start(async_mode=False, ctx=OnlineRLContext()): |
|
collector_env = BaseEnvManagerV2( |
|
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager |
|
) |
|
expert_collector_env = BaseEnvManagerV2( |
|
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager |
|
) |
|
evaluator_env = BaseEnvManagerV2( |
|
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager |
|
) |
|
|
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
model = ContinuousQAC(**cfg.policy.model) |
|
expert_model = ContinuousQAC(**cfg.policy.model) |
|
|
|
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) |
|
expert_buffer = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) |
|
|
|
policy = SQILSACPolicy(cfg.policy, model=model) |
|
expert_policy = SQILSACPolicy(expert_cfg.policy, model=expert_model) |
|
state_dict = torch.load(cfg.policy.collect.model_path, map_location='cpu') |
|
expert_policy.collect_mode.load_state_dict(state_dict) |
|
|
|
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) |
|
task.use( |
|
StepCollector(cfg, policy.collect_mode, collector_env, random_collect_size=cfg.policy.random_collect_size) |
|
) |
|
task.use(sqil_data_pusher(cfg, buffer_, expert=False)) |
|
task.use( |
|
StepCollector( |
|
cfg, |
|
expert_policy.collect_mode, |
|
expert_collector_env, |
|
random_collect_size=cfg.policy.expert_random_collect_size |
|
) |
|
) |
|
task.use(sqil_data_pusher(cfg, expert_buffer, expert=True)) |
|
task.use(OffPolicyLearner(cfg, policy.learn_mode, [(buffer_, 0.5), (expert_buffer, 0.5)])) |
|
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) |
|
task.use(termination_checker(max_train_iter=10000)) |
|
task.run() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|