zjowowen's picture
init space
079c32c
from typing import Union, Optional, Dict, Callable, List
import torch
import torch.nn as nn
from easydict import EasyDict
from ding.torch_utils import get_lstm
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, \
MultiHead, RegressionHead, ReparameterizationHead, independent_normal_dist
@MODEL_REGISTRY.register('pg')
class PG(nn.Module):
"""
Overview:
The neural network and computation graph of algorithms related to Policy Gradient(PG) \
(https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf). \
The PG model is composed of two parts: encoder and head. Encoders are used to extract the feature \
from various observation. Heads are used to predict corresponding action logit.
Interface:
``__init__``, ``forward``.
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
action_space: str = 'discrete',
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None
) -> None:
"""
Overview:
Initialize the PG model according to corresponding input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- action_space (:obj:`str`): The type of different action spaces, including ['discrete', 'continuous'], \
then will instantiate corresponding head, including ``DiscreteHead`` and ``ReparameterizationHead``.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``head`` network, defaults \
to None, it must match the last element of ``encoder_hidden_size_list``.
- head_layer_num (:obj:`int`): The num of layers used in the ``head`` network to compute action.
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']
Examples:
>>> model = PG((4, 84, 84), 5)
>>> inputs = torch.randn(8, 4, 84, 84)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == (8, 5)
>>> assert outputs['dist'].sample().shape == (8, )
"""
super(PG, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own BC".format(obs_shape)
)
self.action_space = action_space
# Head
if self.action_space == 'discrete':
self.head = DiscreteHead(
head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type
)
elif self.action_space == 'continuous':
self.head = ReparameterizationHead(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
sigma_type='independent'
)
else:
raise KeyError("not support action space: {}".format(self.action_space))
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
PG forward computation graph, input observation tensor to predict policy distribution.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`torch.distributions`): The output policy distribution. If action space is \
discrete, the output is Categorical distribution; if action space is continuous, the output is Normal \
distribution.
"""
x = self.encoder(x)
x = self.head(x)
if self.action_space == 'discrete':
x['dist'] = torch.distributions.Categorical(logits=x['logit'])
elif self.action_space == 'continuous':
x = {'logit': {'mu': x['mu'], 'sigma': x['sigma']}}
x['dist'] = independent_normal_dist(x['logit'])
return x