zjowowen's picture
init space
079c32c
from typing import Union, Dict, Optional
import torch
import torch.nn as nn
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ..common import RegressionHead, ReparameterizationHead, DistributionHead
@MODEL_REGISTRY.register('qac_dist')
class QACDIST(nn.Module):
"""
Overview:
The QAC model with distributional Q-value.
Interfaces:
``__init__``, ``forward``, ``compute_actor``, ``compute_critic``
"""
mode = ['compute_actor', 'compute_critic']
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
action_space: str = "regression",
critic_head_type: str = "categorical",
actor_head_hidden_size: int = 64,
actor_head_layer_num: int = 1,
critic_head_hidden_size: int = 64,
critic_head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
v_min: Optional[float] = -10,
v_max: Optional[float] = 10,
n_atom: Optional[int] = 51,
) -> None:
"""
Overview:
Init the QAC Distributional Model according to arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's space.
- action_shape (:obj:`Union[int, SequenceType]`): Action's space.
- action_space (:obj:`str`): Whether choose ``regression`` or ``reparameterization``.
- critic_head_type (:obj:`str`): Only ``categorical``.
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``.
- actor_head_layer_num (:obj:`int`):
The num of layers used in the network to compute Q value output for actor's nn.
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``.
- critic_head_layer_num (:obj:`int`):
The num of layers used in the network to compute Q value output for critic's nn.
- activation (:obj:`Optional[nn.Module]`):
The type of activation function to use in ``MLP`` the after ``layer_fn``,
if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`):
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details.
- v_min (:obj:`int`): Value of the smallest atom
- v_max (:obj:`int`): Value of the largest atom
- n_atom (:obj:`int`): Number of atoms in the support
"""
super(QACDIST, self).__init__()
obs_shape: int = squeeze(obs_shape)
action_shape: int = squeeze(action_shape)
self.action_space = action_space
assert self.action_space in ['regression', 'reparameterization']
if self.action_space == 'regression':
self.actor = nn.Sequential(
nn.Linear(obs_shape, actor_head_hidden_size), activation,
RegressionHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
final_tanh=True,
activation=activation,
norm_type=norm_type
)
)
elif self.action_space == 'reparameterization':
self.actor = nn.Sequential(
nn.Linear(obs_shape, actor_head_hidden_size), activation,
ReparameterizationHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
sigma_type='conditioned',
activation=activation,
norm_type=norm_type
)
)
self.critic_head_type = critic_head_type
assert self.critic_head_type in ['categorical'], self.critic_head_type
if self.critic_head_type == 'categorical':
self.critic = nn.Sequential(
nn.Linear(obs_shape + action_shape, critic_head_hidden_size), activation,
DistributionHead(
critic_head_hidden_size,
1,
critic_head_layer_num,
n_atom=n_atom,
v_min=v_min,
v_max=v_max,
activation=activation,
norm_type=norm_type
)
)
def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict:
"""
Overview:
Use observation and action tensor to predict output.
Parameter updates with QACDIST's MLPs forward setup.
Arguments:
Forward with ``'compute_actor'``:
- inputs (:obj:`torch.Tensor`):
The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``.
Whether ``actor_head_hidden_size`` or ``critic_head_hidden_size`` depend on ``mode``.
Forward with ``'compute_critic'``, inputs (`Dict`) Necessary Keys:
- ``obs``, ``action`` encoded tensors.
- mode (:obj:`str`): Name of the forward mode.
Returns:
- outputs (:obj:`Dict`): Outputs of network forward.
Forward with ``'compute_actor'``, Necessary Keys (either):
- action (:obj:`torch.Tensor`): Action tensor with same size as input ``x``.
- logit (:obj:`torch.Tensor`):
Logit tensor encoding ``mu`` and ``sigma``, both with same size as input ``x``.
Forward with ``'compute_critic'``, Necessary Keys:
- q_value (:obj:`torch.Tensor`): Q value tensor with same size as batch size.
- distribution (:obj:`torch.Tensor`): Q value distribution tensor.
Actor Shapes:
- inputs (:obj:`torch.Tensor`): :math:`(B, N0)`, B is batch size and N0 corresponds to ``hidden_size``
- action (:obj:`torch.Tensor`): :math:`(B, N0)`
- q_value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size.
Critic Shapes:
- obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape``
- action (:obj:`torch.Tensor`): :math:`(B, N2)`, where B is batch size and N2 is``action_shape``
- q_value (:obj:`torch.FloatTensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape``
- distribution (:obj:`torch.FloatTensor`): :math:`(B, 1, N3)`, where B is batch size and N3 is ``num_atom``
Actor Examples:
>>> # Regression mode
>>> model = QACDIST(64, 64, 'regression')
>>> inputs = torch.randn(4, 64)
>>> actor_outputs = model(inputs,'compute_actor')
>>> assert actor_outputs['action'].shape == torch.Size([4, 64])
>>> # Reparameterization Mode
>>> model = QACDIST(64, 64, 'reparameterization')
>>> inputs = torch.randn(4, 64)
>>> actor_outputs = model(inputs,'compute_actor')
>>> actor_outputs['logit'][0].shape # mu
>>> torch.Size([4, 64])
>>> actor_outputs['logit'][1].shape # sigma
>>> torch.Size([4, 64])
Critic Examples:
>>> # Categorical mode
>>> inputs = {'obs': torch.randn(4,N), 'action': torch.randn(4,1)}
>>> model = QACDIST(obs_shape=(N, ),action_shape=1,action_space='regression', \
... critic_head_type='categorical', n_atoms=51)
>>> q_value = model(inputs, mode='compute_critic') # q value
>>> assert q_value['q_value'].shape == torch.Size([4, 1])
>>> assert q_value['distribution'].shape == torch.Size([4, 1, 51])
"""
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
return getattr(self, mode)(inputs)
def compute_actor(self, inputs: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to predict output.
Execute parameter updates with ``'compute_actor'`` mode
Use encoded embedding tensor to predict output.
Arguments:
- inputs (:obj:`torch.Tensor`):
The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``.
``hidden_size = actor_head_hidden_size``
- mode (:obj:`str`): Name of the forward mode.
Returns:
- outputs (:obj:`Dict`): Outputs of forward pass encoder and head.
ReturnsKeys (either):
- action (:obj:`torch.Tensor`): Continuous action tensor with same size as ``action_shape``.
- logit (:obj:`torch.Tensor`):
Logit tensor encoding ``mu`` and ``sigma``, both with same size as input ``x``.
Shapes:
- inputs (:obj:`torch.Tensor`): :math:`(B, N0)`, B is batch size and N0 corresponds to ``hidden_size``
- action (:obj:`torch.Tensor`): :math:`(B, N0)`
- logit (:obj:`list`): 2 elements, mu and sigma, each is the shape of :math:`(B, N0)`.
- q_value (:obj:`torch.FloatTensor`): :math:`(B, )`, B is batch size.
Examples:
>>> # Regression mode
>>> model = QACDIST(64, 64, 'regression')
>>> inputs = torch.randn(4, 64)
>>> actor_outputs = model(inputs,'compute_actor')
>>> assert actor_outputs['action'].shape == torch.Size([4, 64])
>>> # Reparameterization Mode
>>> model = QACDIST(64, 64, 'reparameterization')
>>> inputs = torch.randn(4, 64)
>>> actor_outputs = model(inputs,'compute_actor')
>>> actor_outputs['logit'][0].shape # mu
>>> torch.Size([4, 64])
>>> actor_outputs['logit'][1].shape # sigma
>>> torch.Size([4, 64])
"""
x = self.actor(inputs)
if self.action_space == 'regression':
return {'action': x['pred']}
elif self.action_space == 'reparameterization':
return {'logit': [x['mu'], x['sigma']]}
def compute_critic(self, inputs: Dict) -> Dict:
"""
Overview:
Execute parameter updates with ``'compute_critic'`` mode
Use encoded embedding tensor to predict output.
Arguments:
- ``obs``, ``action`` encoded tensors.
- mode (:obj:`str`): Name of the forward mode.
Returns:
- outputs (:obj:`Dict`): Q-value output and distribution.
ReturnKeys:
- q_value (:obj:`torch.Tensor`): Q value tensor with same size as batch size.
- distribution (:obj:`torch.Tensor`): Q value distribution tensor.
Shapes:
- obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape``
- action (:obj:`torch.Tensor`): :math:`(B, N2)`, where B is batch size and N2 is``action_shape``
- q_value (:obj:`torch.FloatTensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape``
- distribution (:obj:`torch.FloatTensor`): :math:`(B, 1, N3)`, where B is batch size and N3 is ``num_atom``
Examples:
>>> # Categorical mode
>>> inputs = {'obs': torch.randn(4,N), 'action': torch.randn(4,1)}
>>> model = QACDIST(obs_shape=(N, ),action_shape=1,action_space='regression', \
... critic_head_type='categorical', n_atoms=51)
>>> q_value = model(inputs, mode='compute_critic') # q value
>>> assert q_value['q_value'].shape == torch.Size([4, 1])
>>> assert q_value['distribution'].shape == torch.Size([4, 1, 51])
"""
obs, action = inputs['obs'], inputs['action']
assert len(obs.shape) == 2
if len(action.shape) == 1: # (B, ) -> (B, 1)
action = action.unsqueeze(1)
x = torch.cat([obs, action], dim=1)
x = self.critic(x)
return {'q_value': x['logit'], 'distribution': x['distribution']}