|
import torch |
|
import pytest |
|
from itertools import product |
|
|
|
from ding.model.template import ACER |
|
from ding.torch_utils import is_differentiable |
|
|
|
B = 4 |
|
obs_shape = [4, (8, ), (4, 64, 64)] |
|
act_shape = [3, (6, )] |
|
args = list(product(*[obs_shape, act_shape])) |
|
|
|
|
|
@pytest.mark.unittest |
|
class TestACER: |
|
|
|
@pytest.mark.parametrize('obs_shape, act_shape', args) |
|
def test_ACER(self, obs_shape, act_shape): |
|
if isinstance(obs_shape, int): |
|
inputs = torch.randn(B, obs_shape) |
|
else: |
|
inputs = torch.randn(B, *obs_shape) |
|
model = ACER(obs_shape, act_shape) |
|
|
|
outputs_c = model(inputs, mode='compute_critic') |
|
assert isinstance(outputs_c, dict) |
|
if isinstance(act_shape, int): |
|
assert outputs_c['q_value'].shape == (B, act_shape) |
|
elif len(act_shape) == 1: |
|
assert outputs_c['q_value'].shape == (B, *act_shape) |
|
|
|
outputs_a = model(inputs, mode='compute_actor') |
|
assert isinstance(outputs_a, dict) |
|
if isinstance(act_shape, int): |
|
assert outputs_a['logit'].shape == (B, act_shape) |
|
elif len(act_shape) == 1: |
|
assert outputs_a['logit'].shape == (B, *act_shape) |
|
|
|
outputs = {**outputs_a, **outputs_c} |
|
loss = sum([v.sum() for v in outputs.values()]) |
|
is_differentiable(loss, model) |
|
|