|
import pytest |
|
import numpy as np |
|
import torch |
|
from itertools import product |
|
|
|
from ding.model import mavac |
|
from ding.model.template.mavac import MAVAC |
|
from ding.torch_utils import is_differentiable |
|
|
|
B = 32 |
|
agent_obs_shape = [216, 265] |
|
global_obs_shape = [264, 324] |
|
agent_num = 8 |
|
action_shape = 14 |
|
args = list(product(*[agent_obs_shape, global_obs_shape])) |
|
|
|
|
|
@pytest.mark.unittest |
|
@pytest.mark.parametrize('agent_obs_shape, global_obs_shape', args) |
|
class TestVAC: |
|
|
|
def output_check(self, model, outputs, action_shape): |
|
if isinstance(action_shape, tuple): |
|
loss = sum([t.sum() for t in outputs]) |
|
elif np.isscalar(action_shape): |
|
loss = outputs.sum() |
|
is_differentiable(loss, model) |
|
|
|
def test_vac(self, agent_obs_shape, global_obs_shape): |
|
data = { |
|
'agent_state': torch.randn(B, agent_num, agent_obs_shape), |
|
'global_state': torch.randn(B, agent_num, global_obs_shape), |
|
'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape)) |
|
} |
|
model = MAVAC(agent_obs_shape, global_obs_shape, action_shape, agent_num) |
|
|
|
logit = model(data, mode='compute_actor_critic')['logit'] |
|
value = model(data, mode='compute_actor_critic')['value'] |
|
|
|
outputs = value.sum() + logit.sum() |
|
self.output_check(model, outputs, action_shape) |
|
|
|
for p in model.parameters(): |
|
p.grad = None |
|
logit = model(data, mode='compute_actor')['logit'] |
|
self.output_check(model.actor, logit, model.action_shape) |
|
|
|
for p in model.parameters(): |
|
p.grad = None |
|
value = model(data, mode='compute_critic')['value'] |
|
assert value.shape == (B, agent_num) |
|
self.output_check(model.critic, value, action_shape) |
|
|