zjowowen's picture
init space
079c32c
import pytest
from itertools import product
import torch
from ding.model.template import DQN, RainbowDQN, QRDQN, IQN, FQF, DRQN, C51DQN, BDQ, GTrXLDQN
from ding.torch_utils import is_differentiable
T, B = 3, 4
obs_shape = [4, (8, ), (4, 64, 64)]
act_shape = [3, (6, ), [2, 3, 6]]
args = list(product(*[obs_shape, act_shape]))
@pytest.mark.unittest
class TestQLearning:
def output_check(self, model, outputs):
if isinstance(outputs, torch.Tensor):
loss = outputs.sum()
elif isinstance(outputs, list):
loss = sum([t.sum() for t in outputs])
elif isinstance(outputs, dict):
loss = sum([v.sum() for v in outputs.values()])
is_differentiable(loss, model)
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_dqn(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(B, obs_shape)
else:
inputs = torch.randn(B, *obs_shape)
model = DQN(obs_shape, act_shape)
outputs = model(inputs)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (B, act_shape)
elif len(act_shape) == 1:
assert outputs['logit'].shape == (B, *act_shape)
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (B, s)
self.output_check(model, outputs['logit'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_bdq(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(B, obs_shape)
else:
inputs = torch.randn(B, *obs_shape)
if not isinstance(act_shape, int) and len(act_shape) > 1:
return
num_branches = act_shape
for action_bins_per_branch in range(1, 10):
model = BDQ(obs_shape, num_branches, action_bins_per_branch)
outputs = model(inputs)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (B, act_shape, action_bins_per_branch)
else:
assert outputs['logit'].shape == (B, *act_shape, action_bins_per_branch)
self.output_check(model, outputs['logit'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_rainbowdqn(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(B, obs_shape)
else:
inputs = torch.randn(B, *obs_shape)
model = RainbowDQN(obs_shape, act_shape, n_atom=41)
outputs = model(inputs)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (B, act_shape)
assert outputs['distribution'].shape == (B, act_shape, 41)
elif len(act_shape) == 1:
assert outputs['logit'].shape == (B, *act_shape)
assert outputs['distribution'].shape == (B, *act_shape, 41)
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (B, s)
assert outputs['distribution'][i].shape == (B, s, 41)
self.output_check(model, outputs['logit'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_c51(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(B, obs_shape)
else:
inputs = torch.randn(B, *obs_shape)
model = C51DQN(obs_shape, act_shape, n_atom=41)
outputs = model(inputs)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (B, act_shape)
assert outputs['distribution'].shape == (B, act_shape, 41)
elif len(act_shape) == 1:
assert outputs['logit'].shape == (B, *act_shape)
assert outputs['distribution'].shape == (B, *act_shape, 41)
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (B, s)
assert outputs['distribution'][i].shape == (B, s, 41)
self.output_check(model, outputs['logit'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_iqn(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(B, obs_shape)
else:
inputs = torch.randn(B, *obs_shape)
num_quantiles = 48
model = IQN(obs_shape, act_shape, num_quantiles=num_quantiles, quantile_embedding_size=64)
outputs = model(inputs)
print(model)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (B, act_shape)
assert outputs['q'].shape == (num_quantiles, B, act_shape)
assert outputs['quantiles'].shape == (B * num_quantiles, 1)
elif len(act_shape) == 1:
assert outputs['logit'].shape == (B, *act_shape)
assert outputs['q'].shape == (num_quantiles, B, *act_shape)
assert outputs['quantiles'].shape == (B * num_quantiles, 1)
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (B, s)
assert outputs['q'][i].shape == (num_quantiles, B, s)
assert outputs['quantiles'][i].shape == (B * num_quantiles, 1)
self.output_check(model, outputs['logit'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_fqf(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(B, obs_shape)
else:
inputs = torch.randn(B, *obs_shape)
num_quantiles = 48
model = FQF(obs_shape, act_shape, num_quantiles=num_quantiles, quantile_embedding_size=64)
outputs = model(inputs)
print(model)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (B, act_shape)
assert outputs['q'].shape == (B, num_quantiles, act_shape)
assert outputs['quantiles'].shape == (B, num_quantiles + 1)
assert outputs['quantiles_hats'].shape == (B, num_quantiles)
assert outputs['q_tau_i'].shape == (B, num_quantiles - 1, act_shape)
all_quantiles_proposal = model.head.quantiles_proposal
all_fqf_fc = model.head.fqf_fc
elif len(act_shape) == 1:
assert outputs['logit'].shape == (B, *act_shape)
assert outputs['q'].shape == (B, num_quantiles, *act_shape)
assert outputs['quantiles'].shape == (B, num_quantiles + 1)
assert outputs['quantiles_hats'].shape == (B, num_quantiles)
assert outputs['q_tau_i'].shape == (B, num_quantiles - 1, *act_shape)
all_quantiles_proposal = model.head.quantiles_proposal
all_fqf_fc = model.head.fqf_fc
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (B, s)
assert outputs['q'][i].shape == (B, num_quantiles, s)
assert outputs['quantiles'][i].shape == (B, num_quantiles + 1)
assert outputs['quantiles_hats'][i].shape == (B, num_quantiles)
assert outputs['q_tau_i'][i].shape == (B, num_quantiles - 1, s)
all_quantiles_proposal = [h.quantiles_proposal for h in model.head.pred]
all_fqf_fc = [h.fqf_fc for h in model.head.pred]
self.output_check(all_quantiles_proposal, outputs['quantiles'])
for p in model.parameters():
p.grad = None
self.output_check(all_fqf_fc, outputs['q'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_qrdqn(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(B, obs_shape)
else:
inputs = torch.randn(B, *obs_shape)
model = QRDQN(obs_shape, act_shape, num_quantiles=32)
outputs = model(inputs)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (B, act_shape)
assert outputs['q'].shape == (B, act_shape, 32)
assert outputs['tau'].shape == (B, 32, 1)
elif len(act_shape) == 1:
assert outputs['logit'].shape == (B, *act_shape)
assert outputs['q'].shape == (B, *act_shape, 32)
assert outputs['tau'].shape == (B, 32, 1)
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (B, s)
assert outputs['q'][i].shape == (B, s, 32)
assert outputs['tau'][i].shape == (B, 32, 1)
self.output_check(model, outputs['logit'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_drqn(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(T, B, obs_shape)
else:
inputs = torch.randn(T, B, *obs_shape)
# (num_layer * num_direction, 1, head_hidden_size)
prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)]
model = DRQN(obs_shape, act_shape)
outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=False)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (T, B, act_shape)
elif len(act_shape) == 1:
assert outputs['logit'].shape == (T, B, *act_shape)
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (T, B, s)
assert len(outputs['next_state']) == B
assert all([len(t) == 2 for t in outputs['next_state']])
assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']])
self.output_check(model, outputs['logit'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_drqn_inference(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(B, obs_shape)
else:
inputs = torch.randn(B, *obs_shape)
# (num_layer * num_direction, 1, head_hidden_size)
prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)]
model = DRQN(obs_shape, act_shape)
outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=True)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (B, act_shape)
elif len(act_shape) == 1:
assert outputs['logit'].shape == (B, *act_shape)
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (B, s)
assert len(outputs['next_state']) == B
assert all([len(t) == 2 for t in outputs['next_state']])
assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']])
self.output_check(model, outputs['logit'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_drqn_res_link(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(T, B, obs_shape)
else:
inputs = torch.randn(T, B, *obs_shape)
# (num_layer * num_direction, 1, head_hidden_size)
prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)]
model = DRQN(obs_shape, act_shape, res_link=True)
outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=False)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (T, B, act_shape)
elif len(act_shape) == 1:
assert outputs['logit'].shape == (T, B, *act_shape)
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (T, B, s)
assert len(outputs['next_state']) == B
assert all([len(t) == 2 for t in outputs['next_state']])
assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']])
self.output_check(model, outputs['logit'])
@pytest.mark.parametrize('obs_shape, act_shape', args)
def test_drqn_inference_res_link(self, obs_shape, act_shape):
if isinstance(obs_shape, int):
inputs = torch.randn(B, obs_shape)
else:
inputs = torch.randn(B, *obs_shape)
# (num_layer * num_direction, 1, head_hidden_size)
prev_state = [{k: torch.randn(1, 1, 64) for k in ['h', 'c']} for _ in range(B)]
model = DRQN(obs_shape, act_shape, res_link=True)
outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=True)
assert isinstance(outputs, dict)
if isinstance(act_shape, int):
assert outputs['logit'].shape == (B, act_shape)
elif len(act_shape) == 1:
assert outputs['logit'].shape == (B, *act_shape)
else:
for i, s in enumerate(act_shape):
assert outputs['logit'][i].shape == (B, s)
assert len(outputs['next_state']) == B
assert all([len(t) == 2 for t in outputs['next_state']])
assert all([t['h'].shape == (1, 1, 64) for t in outputs['next_state']])
self.output_check(model, outputs['logit'])
@pytest.mark.tmp
def test_GTrXLDQN(self):
obs_dim, seq_len, bs, action_dim = [4, 64, 64], 64, 32, 4
obs = torch.rand(seq_len, bs, *obs_dim)
model = GTrXLDQN(obs_dim, action_dim, encoder_hidden_size_list=[16, 16, 16])
outputs = model(obs)
assert isinstance(outputs, dict)