|
import torch |
|
import numpy as np |
|
import pytest |
|
from itertools import product |
|
|
|
from ding.model.template import ContinuousQAC, DiscreteMAQAC, DiscreteQAC |
|
from ding.torch_utils import is_differentiable |
|
from ding.utils import squeeze |
|
|
|
B = 4 |
|
T = 6 |
|
embedding_size = 32 |
|
action_shape_args = [(6, ), [ |
|
1, |
|
]] |
|
args = list(product(*[action_shape_args, [True, False], ['regression', 'reparameterization']])) |
|
|
|
|
|
@pytest.mark.unittest |
|
@pytest.mark.parametrize('action_shape, twin, action_space', args) |
|
class TestContinuousQAC: |
|
|
|
def test_fcqac(self, action_shape, twin, action_space): |
|
N = 32 |
|
inputs = {'obs': torch.randn(B, N), 'action': torch.randn(B, squeeze(action_shape))} |
|
model = ContinuousQAC( |
|
obs_shape=(N, ), |
|
action_shape=action_shape, |
|
action_space=action_space, |
|
critic_head_hidden_size=embedding_size, |
|
actor_head_hidden_size=embedding_size, |
|
twin_critic=twin, |
|
) |
|
|
|
q = model(inputs, mode='compute_critic')['q_value'] |
|
if twin: |
|
is_differentiable(q[0].sum(), model.critic[1][0]) |
|
is_differentiable(q[1].sum(), model.critic[1][1]) |
|
else: |
|
is_differentiable(q.sum(), model.critic) |
|
|
|
|
|
print(model) |
|
if action_space == 'regression': |
|
action = model(inputs['obs'], mode='compute_actor')['action'] |
|
if squeeze(action_shape) == 1: |
|
assert action.shape == (B, ) |
|
else: |
|
assert action.shape == (B, squeeze(action_shape)) |
|
assert action.eq(action.clamp(-1, 1)).all() |
|
is_differentiable(action.sum(), model.actor) |
|
elif action_space == 'reparameterization': |
|
(mu, sigma) = model(inputs['obs'], mode='compute_actor')['logit'] |
|
assert mu.shape == (B, *action_shape) |
|
assert sigma.shape == (B, *action_shape) |
|
is_differentiable(mu.sum() + sigma.sum(), model.actor) |
|
|
|
|
|
args = list(product(*[[True, False], [(13, ), [4, 84, 84]]])) |
|
|
|
|
|
@pytest.mark.unittest |
|
@pytest.mark.parametrize('twin, obs_shape', args) |
|
class TestDiscreteQAC: |
|
|
|
def test_discreteqac(self, twin, obs_shape): |
|
action_shape = 6 |
|
inputs = torch.randn(B, *obs_shape) |
|
model = DiscreteQAC( |
|
obs_shape=obs_shape, |
|
action_shape=action_shape, |
|
twin_critic=twin, |
|
encoder_hidden_size_list=[32, 32, 64] if len(obs_shape) > 1 else None, |
|
) |
|
|
|
q = model(inputs, mode='compute_critic')['q_value'] |
|
if twin: |
|
is_differentiable(q[0].sum(), model.critic[1][0]) |
|
|
|
assert q[0].shape == (B, action_shape) |
|
assert q[1].shape == (B, action_shape) |
|
else: |
|
is_differentiable(q.sum(), model.critic[1]) |
|
assert q.shape == (B, action_shape) |
|
|
|
|
|
print(model) |
|
logit = model(inputs, mode='compute_actor')['logit'] |
|
assert logit.shape == (B, action_shape) |
|
is_differentiable(logit.sum(), model.actor) |
|
|
|
|
|
B = 4 |
|
embedding_size = 64 |
|
action_shape_args = [(6, ), 1] |
|
args = list(product(*[action_shape_args, [True, False], [True, False]])) |
|
|
|
|
|
@pytest.mark.unittest |
|
@pytest.mark.parametrize('action_shape, twin, share_encoder', args) |
|
class TestContinuousQACPixel: |
|
|
|
def test_qacpixel(self, action_shape, twin, share_encoder): |
|
inputs = {'obs': torch.randn(B, 3, 84, 84), 'action': torch.randn(B, squeeze(action_shape))} |
|
model = ContinuousQAC( |
|
obs_shape=(3, 84, 84), |
|
action_shape=action_shape, |
|
action_space='reparameterization', |
|
critic_head_hidden_size=embedding_size, |
|
actor_head_hidden_size=embedding_size, |
|
twin_critic=twin, |
|
share_encoder=share_encoder, |
|
encoder_hidden_size_list=[32, 32, 64], |
|
) |
|
|
|
q = model(inputs, mode='compute_critic')['q_value'] |
|
if twin: |
|
q = torch.min(q[0], q[1]) |
|
is_differentiable(q.sum(), model.critic) |
|
|
|
|
|
print(model) |
|
(mu, sigma) = model(inputs['obs'], mode='compute_actor')['logit'] |
|
action_shape = squeeze(action_shape) |
|
assert mu.shape == (B, action_shape) |
|
assert sigma.shape == (B, action_shape) |
|
if share_encoder: |
|
is_differentiable(mu.sum() + sigma.sum(), model.actor_head) |
|
else: |
|
is_differentiable(mu.sum() + sigma.sum(), model.actor) |
|
|