|
from typing import List, Dict, Any, Tuple |
|
from collections import namedtuple |
|
import copy |
|
import torch |
|
from torch.optim import AdamW |
|
from ding.torch_utils import Adam, to_device |
|
from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, get_nstep_return_data, get_train_sample, \ |
|
dqfd_nstep_td_error, dqfd_nstep_td_data |
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import default_collate, default_decollate |
|
from .dqn import DQNPolicy |
|
from .common_utils import default_preprocess_learn |
|
from copy import deepcopy |
|
|
|
|
|
@POLICY_REGISTRY.register('dqfd') |
|
class DQFDPolicy(DQNPolicy): |
|
r""" |
|
Overview: |
|
Policy class of DQFD algorithm, extended by Double DQN/Dueling DQN/PER/multi-step TD. |
|
|
|
Config: |
|
== ==================== ======== ============== ======================================== ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ==================== ======== ============== ======================================== ======================= |
|
1 ``type`` str dqn | RL policy register name, refer to | This arg is optional, |
|
| registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- |
|
| erent from modes |
|
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy |
|
| or off-policy |
|
4 ``priority`` bool True | Whether use priority(PER) | Priority sample, |
|
| update priority |
|
5 | ``priority_IS`` bool True | Whether use Importance Sampling Weight |
|
| ``_weight`` | to correct biased update. If True, |
|
| priority must be True. |
|
6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse |
|
| ``factor`` [0.95, 0.999] | gamma | reward env |
|
7 ``nstep`` int 10, | N-step reward discount sum for target |
|
[3, 5] | q_value estimation |
|
8 | ``lambda1`` float 1 | multiplicative factor for n-step |
|
9 | ``lambda2`` float 1 | multiplicative factor for the |
|
| supervised margin loss |
|
10 | ``lambda3`` float 1e-5 | L2 loss |
|
11 | ``margin_fn`` float 0.8 | margin function in JE, here we set |
|
| this as a constant |
|
12 | ``per_train_`` int 10 | number of pertraining iterations |
|
| ``iter_k`` |
|
13 | ``learn.update`` int 3 | How many updates(iterations) to train | This args can be vary |
|
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val |
|
| valid in serial training | means more off-policy |
|
14 | ``learn.batch_`` int 64 | The number of samples of an iteration |
|
| ``size`` |
|
15 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. |
|
| ``_rate`` |
|
16 | ``learn.target_`` int 100 | Frequency of target network update. | Hard(assign) update |
|
| ``update_freq`` |
|
17 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some |
|
| ``done`` | calculation. | fake termination env |
|
18 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from |
|
| call of collector. | different envs |
|
19 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 |
|
| ``_len`` |
|
== ==================== ======== ============== ======================================== ======================= |
|
""" |
|
|
|
config = dict( |
|
type='dqfd', |
|
cuda=False, |
|
on_policy=False, |
|
priority=True, |
|
|
|
priority_IS_weight=True, |
|
discount_factor=0.99, |
|
nstep=10, |
|
learn=dict( |
|
|
|
lambda1=1.0, |
|
lambda2=1.0, |
|
lambda3=1e-5, |
|
|
|
margin_function=0.8, |
|
|
|
per_train_iter_k=10, |
|
|
|
|
|
|
|
|
|
update_per_collect=3, |
|
batch_size=64, |
|
learning_rate=0.001, |
|
|
|
|
|
|
|
|
|
target_update_freq=100, |
|
|
|
ignore_done=False, |
|
), |
|
|
|
collect=dict( |
|
|
|
|
|
|
|
unroll_len=1, |
|
|
|
|
|
pho=0.5, |
|
), |
|
eval=dict(), |
|
|
|
other=dict( |
|
|
|
eps=dict( |
|
|
|
type='exp', |
|
start=0.95, |
|
end=0.1, |
|
|
|
decay=10000, |
|
), |
|
replay_buffer=dict(replay_buffer_size=10000, ), |
|
), |
|
) |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Learn mode init method. Called by ``self.__init__``, initialize the optimizer, algorithm arguments, main \ |
|
and target model. |
|
""" |
|
self.lambda1 = self._cfg.learn.lambda1 |
|
self.lambda2 = self._cfg.learn.lambda2 |
|
self.lambda3 = self._cfg.learn.lambda3 |
|
|
|
self.margin_function = self._cfg.learn.margin_function |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
|
|
|
|
self._optimizer = AdamW(self._model.parameters(), lr=self._cfg.learn.learning_rate, weight_decay=self.lambda3) |
|
|
|
|
|
self._gamma = self._cfg.discount_factor |
|
self._nstep = self._cfg.nstep |
|
|
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='assign', |
|
update_kwargs={'freq': self._cfg.learn.target_update_freq} |
|
) |
|
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Forward computation graph of learn mode(updating policy). |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, a batch of data for training, values are torch.Tensor or \ |
|
np.ndarray or dict/list combinations. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ |
|
recorded in text log and tensorboard, values are python scalar or a list of scalars. |
|
ArgumentsKeys: |
|
- necessary: ``obs``, ``action``, ``reward``, ``next_obs``, ``done`` |
|
- optional: ``value_gamma``, ``IS`` |
|
ReturnsKeys: |
|
- necessary: ``cur_lr``, ``total_loss``, ``priority`` |
|
- optional: ``action_distribution`` |
|
""" |
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=True |
|
) |
|
data['done_1'] = data['done_1'].float() |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
|
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
|
|
q_value = self._learn_model.forward(data['obs'])['logit'] |
|
|
|
with torch.no_grad(): |
|
target_q_value = self._target_model.forward(data['next_obs'])['logit'] |
|
target_q_value_one_step = self._target_model.forward(data['next_obs_1'])['logit'] |
|
|
|
target_q_action = self._learn_model.forward(data['next_obs'])['action'] |
|
target_q_action_one_step = self._learn_model.forward(data['next_obs_1'])['action'] |
|
|
|
|
|
is_expert = data['is_expert'].float() |
|
data_n = dqfd_nstep_td_data( |
|
q_value, |
|
target_q_value, |
|
data['action'], |
|
target_q_action, |
|
data['reward'], |
|
data['done'], |
|
data['done_1'], |
|
data['weight'], |
|
target_q_value_one_step, |
|
target_q_action_one_step, |
|
is_expert |
|
) |
|
value_gamma = data.get('value_gamma') |
|
loss, td_error_per_sample, loss_statistics = dqfd_nstep_td_error( |
|
data_n, |
|
self._gamma, |
|
self.lambda1, |
|
self.lambda2, |
|
self.margin_function, |
|
nstep=self._nstep, |
|
value_gamma=value_gamma |
|
) |
|
|
|
|
|
|
|
|
|
self._optimizer.zero_grad() |
|
loss.backward() |
|
if self._cfg.multi_gpu: |
|
self.sync_gradients(self._learn_model) |
|
self._optimizer.step() |
|
|
|
|
|
|
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
'total_loss': loss.item(), |
|
'priority': td_error_per_sample.abs().tolist(), |
|
|
|
|
|
} |
|
|
|
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: |
|
""" |
|
Overview: |
|
For a given trajectory(transitions, a list of transition) data, process it into a list of sample that \ |
|
can be used for training directly. A train sample can be a processed transition(DQN with nstep TD) \ |
|
or some continuous transitions(DRQN). |
|
Arguments: |
|
- data (:obj:`List[Dict[str, Any]`): The trajectory data(a list of transition), each element is the same \ |
|
format as the return value of ``self._process_transition`` method. |
|
Returns: |
|
- samples (:obj:`dict`): The list of training samples. |
|
|
|
.. note:: |
|
We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \ |
|
And the user can customize the this data processing procecure by overriding this two methods and collector \ |
|
itself. |
|
""" |
|
data_1 = deepcopy(get_nstep_return_data(data, 1, gamma=self._gamma)) |
|
data = get_nstep_return_data( |
|
data, self._nstep, gamma=self._gamma |
|
) |
|
for i in range(len(data)): |
|
data[i]['next_obs_1'] = data_1[i]['next_obs'] |
|
data[i]['done_1'] = data_1[i]['done'] |
|
return get_train_sample(data, self._unroll_len) |
|
|