|
from typing import List, Dict, Any, Tuple, Union |
|
from collections import namedtuple |
|
import torch |
|
import torch.nn as nn |
|
|
|
from ding.torch_utils import Adam, to_device |
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import default_collate, default_decollate |
|
from .base_policy import Policy |
|
FootballKaggle5thPlaceModel = None |
|
|
|
|
|
@POLICY_REGISTRY.register('IL') |
|
class ILPolicy(Policy): |
|
r""" |
|
Overview: |
|
Policy class of Imitation learning algorithm |
|
Interface: |
|
__init__, set_setting, __repr__, state_dict_handle |
|
Property: |
|
learn_mode, collect_mode, eval_mode |
|
""" |
|
config = dict( |
|
type='IL', |
|
cuda=True, |
|
|
|
on_policy=False, |
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
learn=dict( |
|
|
|
|
|
update_per_collect=20, |
|
|
|
batch_size=64, |
|
|
|
learning_rate=0.0002, |
|
), |
|
collect=dict( |
|
|
|
|
|
|
|
discount_factor=0.99, |
|
), |
|
eval=dict(evaluator=dict(eval_freq=800, ), ), |
|
other=dict( |
|
replay_buffer=dict( |
|
replay_buffer_size=100000, |
|
|
|
|
|
max_reuse=10, |
|
), |
|
command=dict(), |
|
), |
|
) |
|
|
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
return 'football_iql', ['dizoo.gfootball.model.iql.iql_network'] |
|
|
|
def _init_learn(self) -> None: |
|
r""" |
|
Overview: |
|
Learn mode init method. Called by ``self.__init__``. |
|
Init optimizers, algorithm config, main and target models. |
|
""" |
|
|
|
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) |
|
|
|
|
|
self._learn_model = model_wrap(self._model, wrapper_name='base') |
|
self._learn_model.train() |
|
self._learn_model.reset() |
|
|
|
self._forward_learn_cnt = 0 |
|
|
|
def _forward_learn(self, data: dict) -> Dict[str, Any]: |
|
r""" |
|
Overview: |
|
Forward and backward function of learn mode. |
|
Arguments: |
|
- data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward', 'next_obs'] |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Including at least actor and critic lr, different losses. |
|
""" |
|
data = default_collate(data, cat_1dim=False) |
|
data['done'] = None |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
loss_dict = {} |
|
|
|
|
|
|
|
obs = data.get('obs') |
|
logit = data.get('logit') |
|
assert isinstance(obs['processed_obs'], torch.Tensor), obs['processed_obs'] |
|
model_action_logit = self._learn_model.forward(obs['processed_obs'])['logit'] |
|
supervised_loss = nn.MSELoss(reduction='none')(model_action_logit, logit).mean() |
|
self._optimizer.zero_grad() |
|
supervised_loss.backward() |
|
self._optimizer.step() |
|
loss_dict['supervised_loss'] = supervised_loss |
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
**loss_dict, |
|
} |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'optimizer': self._optimizer.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._optimizer.load_state_dict(state_dict['optimizer']) |
|
|
|
def _init_collect(self) -> None: |
|
r""" |
|
Overview: |
|
Collect mode init method. Called by ``self.__init__``. |
|
Init traj and unroll length, collect model. |
|
""" |
|
self._collect_model = model_wrap(FootballKaggle5thPlaceModel(), wrapper_name='base') |
|
self._gamma = self._cfg.collect.discount_factor |
|
self._collect_model.eval() |
|
self._collect_model.reset() |
|
|
|
def _forward_collect(self, data: dict) -> dict: |
|
r""" |
|
Overview: |
|
Forward function of collect mode. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ |
|
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. |
|
ReturnsKeys |
|
- necessary: ``action`` |
|
- optional: ``logit`` |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(default_decollate(data['obs']['raw_obs'])) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> Dict[str, Any]: |
|
r""" |
|
Overview: |
|
Generate dict type transition data from inputs. |
|
Arguments: |
|
- obs (:obj:`Any`): Env observation |
|
- model_output (:obj:`dict`): Output of collect model, including at least ['action'] |
|
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \ |
|
(here 'obs' indicates obs after env step, i.e. next_obs). |
|
Return: |
|
- transition (:obj:`Dict[str, Any]`): Dict type transition data. |
|
""" |
|
transition = { |
|
'obs': obs, |
|
'action': model_output['action'], |
|
'logit': model_output['logit'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _get_train_sample(self, origin_data: list) -> Union[None, List[Any]]: |
|
datas = [] |
|
pre_rew = 0 |
|
for i in range(len(origin_data) - 1, -1, -1): |
|
data = {} |
|
data['obs'] = origin_data[i]['obs'] |
|
data['action'] = origin_data[i]['action'] |
|
cur_rew = origin_data[i]['reward'] |
|
pre_rew = cur_rew + (pre_rew * self._gamma) |
|
|
|
data['priority'] = 1 |
|
data['logit'] = origin_data[i]['logit'] |
|
datas.append(data) |
|
return datas |
|
|
|
def _init_eval(self) -> None: |
|
r""" |
|
Overview: |
|
Evaluate mode init method. Called by ``self.__init__``. |
|
Init eval model. Unlike learn and collect model, eval model does not need noise. |
|
""" |
|
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: dict) -> dict: |
|
r""" |
|
Overview: |
|
Forward function of eval mode, similar to ``self._forward_collect``. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ |
|
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The dict of predicting action for the interaction with env. |
|
ReturnsKeys |
|
- necessary: ``action`` |
|
- optional: ``logit`` |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
with torch.no_grad(): |
|
output = self._eval_model.forward(data['obs']['processed_obs']) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
r""" |
|
Overview: |
|
Return variables' name if variables are to used in monitor. |
|
Returns: |
|
- vars (:obj:`List[str]`): Variables' name list. |
|
""" |
|
return ['cur_lr', 'supervised_loss'] |
|
|