|
from typing import List, Dict, Any |
|
import copy |
|
import torch |
|
|
|
from ding.torch_utils import Adam, to_device |
|
from ding.rl_utils import m_q_1step_td_data, m_q_1step_td_error |
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY |
|
|
|
from .dqn import DQNPolicy |
|
from .common_utils import default_preprocess_learn |
|
|
|
|
|
@POLICY_REGISTRY.register('mdqn') |
|
class MDQNPolicy(DQNPolicy): |
|
""" |
|
Overview: |
|
Policy class of Munchausen DQN algorithm, extended by auxiliary objectives. |
|
Paper link: https://arxiv.org/abs/2007.14430. |
|
Config: |
|
== ==================== ======== ============== ======================================== ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ==================== ======== ============== ======================================== ======================= |
|
1 ``type`` str mdqn | RL policy register name, refer to | This arg is optional, |
|
| registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- |
|
| erent from modes |
|
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy |
|
| or off-policy |
|
4 ``priority`` bool False | Whether use priority(PER) | Priority sample, |
|
| update priority |
|
5 | ``priority_IS`` bool False | Whether use Importance Sampling Weight |
|
| ``_weight`` | to correct biased update. If True, |
|
| priority must be True. |
|
6 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | May be 1 when sparse |
|
| ``factor`` [0.95, 0.999] | gamma | reward env |
|
7 ``nstep`` int 1, | N-step reward discount sum for target |
|
[3, 5] | q_value estimation |
|
8 | ``learn.update`` int 1 | How many updates(iterations) to train | This args can be vary |
|
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val |
|
| valid in serial training | means more off-policy |
|
| ``_gpu`` |
|
10 | ``learn.batch_`` int 32 | The number of samples of an iteration |
|
| ``size`` |
|
11 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. |
|
| ``_rate`` |
|
12 | ``learn.target_`` int 2000 | Frequence of target network update. | Hard(assign) update |
|
| ``update_freq`` |
|
13 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some |
|
| ``done`` | calculation. | fake termination env |
|
14 ``collect.n_sample`` int 4 | The number of training samples of a | It varies from |
|
| call of collector. | different envs |
|
15 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 |
|
| ``_len`` |
|
16 | ``other.eps.type`` str exp | exploration rate decay type | Support ['exp', |
|
| 'linear']. |
|
17 | ``other.eps.`` float 0.01 | start value of exploration rate | [0,1] |
|
| ``start`` |
|
18 | ``other.eps.`` float 0.001 | end value of exploration rate | [0,1] |
|
| ``end`` |
|
19 | ``other.eps.`` int 250000 | decay length of exploration | greater than 0. set |
|
| ``decay`` | decay=250000 means |
|
| the exploration rate |
|
| decay from start |
|
| value to end value |
|
| during decay length. |
|
20 | ``entropy_tau`` float 0.003 | the ration of entropy in TD loss |
|
21 | ``alpha`` float 0.9 | the ration of Munchausen term to the |
|
| TD loss |
|
== ==================== ======== ============== ======================================== ======================= |
|
""" |
|
config = dict( |
|
|
|
type='mdqn', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
|
|
discount_factor=0.97, |
|
|
|
entropy_tau=0.03, |
|
|
|
m_alpha=0.9, |
|
|
|
nstep=1, |
|
|
|
learn=dict( |
|
|
|
|
|
|
|
update_per_collect=3, |
|
|
|
batch_size=64, |
|
|
|
learning_rate=0.001, |
|
|
|
target_update_freq=100, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ignore_done=False, |
|
), |
|
|
|
collect=dict( |
|
|
|
|
|
n_sample=4, |
|
|
|
unroll_len=1, |
|
), |
|
eval=dict(), |
|
|
|
other=dict( |
|
|
|
eps=dict( |
|
|
|
type='exp', |
|
|
|
start=0.95, |
|
|
|
end=0.1, |
|
|
|
decay=10000, |
|
), |
|
replay_buffer=dict( |
|
|
|
replay_buffer_size=10000, |
|
), |
|
), |
|
) |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For MDQN, it contains \ |
|
optimizer, algorithm-specific arguments such as entropy_tau, m_alpha and nstep, main and target model. |
|
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
|
|
|
|
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate, eps=0.0003125) |
|
|
|
self._gamma = self._cfg.discount_factor |
|
self._nstep = self._cfg.nstep |
|
self._entropy_tau = self._cfg.entropy_tau |
|
self._m_alpha = self._cfg.m_alpha |
|
|
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
if 'target_update_freq' in self._cfg.learn: |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='assign', |
|
update_kwargs={'freq': self._cfg.learn.target_update_freq} |
|
) |
|
elif 'target_theta' in self._cfg.learn: |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='momentum', |
|
update_kwargs={'theta': self._cfg.learn.target_theta} |
|
) |
|
else: |
|
raise RuntimeError("DQN needs target network, please either indicate target_update_freq or target_theta") |
|
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Policy forward function of learn mode (training policy and updating parameters). Forward means \ |
|
that the policy inputs some training batch data from the replay buffer and then returns the output \ |
|
result, including various training information such as loss, action_gap, clip_frac, priority. |
|
Arguments: |
|
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \ |
|
training samples. For each element in list, the key of the dict is the name of data items and the \ |
|
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \ |
|
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \ |
|
dimension by some utility functions such as ``default_preprocess_learn``. \ |
|
For MDQN, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ |
|
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \ |
|
and ``value_gamma``. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \ |
|
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \ |
|
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for MDQNPolicy: ``ding.policy.tests.test_mdqn``. |
|
""" |
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=True |
|
) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
|
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
|
|
q_value = self._learn_model.forward(data['obs'])['logit'] |
|
|
|
with torch.no_grad(): |
|
target_q_value_current = self._target_model.forward(data['obs'])['logit'] |
|
target_q_value = self._target_model.forward(data['next_obs'])['logit'] |
|
|
|
data_m = m_q_1step_td_data( |
|
q_value, target_q_value_current, target_q_value, data['action'], data['reward'].squeeze(0), data['done'], |
|
data['weight'] |
|
) |
|
|
|
loss, td_error_per_sample, action_gap, clipfrac = m_q_1step_td_error( |
|
data_m, self._gamma, self._entropy_tau, self._m_alpha |
|
) |
|
|
|
|
|
|
|
self._optimizer.zero_grad() |
|
loss.backward() |
|
if self._cfg.multi_gpu: |
|
self.sync_gradients(self._learn_model) |
|
self._optimizer.step() |
|
|
|
|
|
|
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
'total_loss': loss.item(), |
|
'q_value': q_value.mean().item(), |
|
'target_q_value': target_q_value.mean().item(), |
|
'priority': td_error_per_sample.abs().tolist(), |
|
'action_gap': action_gap.item(), |
|
'clip_frac': clipfrac.mean().item(), |
|
} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
return ['cur_lr', 'total_loss', 'q_value', 'action_gap', 'clip_frac'] |
|
|