gomoku / DI-engine /ding /policy /policy_factory.py
zjowowen's picture
init space
079c32c
from typing import Dict, Any, Callable
from collections import namedtuple
from easydict import EasyDict
import gym
import torch
from ding.torch_utils import to_device
class PolicyFactory:
"""
Overview:
Policy factory class, used to generate different policies for general purpose. Such as random action policy, \
which is used for initial sample collecting for better exploration when ``random_collect_size`` > 0.
Interfaces:
``get_random_policy``
"""
@staticmethod
def get_random_policy(
policy: 'Policy.collect_mode', # noqa
action_space: 'gym.spaces.Space' = None, # noqa
forward_fn: Callable = None,
) -> 'Policy.collect_mode': # noqa
"""
Overview:
According to the given action space, define the forward function of the random policy, then pack it with \
other interfaces of the given policy, and return the final collect mode interfaces of policy.
Arguments:
- policy (:obj:`Policy.collect_mode`): The collect mode interfaces of the policy.
- action_space (:obj:`gym.spaces.Space`): The action space of the environment, gym-style.
- forward_fn (:obj:`Callable`): It action space is too complex, you can define your own forward function \
and pass it to this function, note you should set ``action_space`` to ``None`` in this case.
Returns:
- random_policy (:obj:`Policy.collect_mode`): The collect mode intefaces of the random policy.
"""
assert not (action_space is None and forward_fn is None)
random_collect_function = namedtuple(
'random_collect_function', [
'forward',
'process_transition',
'get_train_sample',
'reset',
'get_attribute',
]
)
def forward(data: Dict[int, Any], *args, **kwargs) -> Dict[int, Any]:
actions = {}
for env_id in data:
if not isinstance(action_space, list):
if isinstance(action_space, gym.spaces.Discrete):
action = torch.LongTensor([action_space.sample()])
elif isinstance(action_space, gym.spaces.MultiDiscrete):
action = [torch.LongTensor([v]) for v in action_space.sample()]
else:
action = torch.as_tensor(action_space.sample())
actions[env_id] = {'action': action}
elif 'global_state' in data[env_id].keys():
# for smac
logit = torch.ones_like(data[env_id]['action_mask'])
logit[data[env_id]['action_mask'] == 0.0] = -1e8
dist = torch.distributions.categorical.Categorical(logits=torch.Tensor(logit))
actions[env_id] = {'action': dist.sample(), 'logit': torch.as_tensor(logit)}
else:
# for gfootball
actions[env_id] = {
'action': torch.as_tensor([action_space_agent.sample() for action_space_agent in action_space]),
'logit': torch.ones([len(action_space), action_space[0].n])
}
return actions
def reset(*args, **kwargs) -> None:
pass
if action_space is None:
return random_collect_function(
forward_fn, policy.process_transition, policy.get_train_sample, reset, policy.get_attribute
)
elif forward_fn is None:
return random_collect_function(
forward, policy.process_transition, policy.get_train_sample, reset, policy.get_attribute
)
def get_random_policy(
cfg: EasyDict,
policy: 'Policy.collect_mode', # noqa
env: 'BaseEnvManager' # noqa
) -> 'Policy.collect_mode': # noqa
"""
Overview:
The entry function to get the corresponding random policy. If a policy needs special data items in a \
transition, then return itself, otherwise, we will use ``PolicyFactory`` to return a general random policy.
Arguments:
- cfg (:obj:`EasyDict`): The EasyDict-type dict configuration.
- policy (:obj:`Policy.collect_mode`): The collect mode interfaces of the policy.
- env (:obj:`BaseEnvManager`): The env manager instance, which is used to get the action space for random \
action generation.
Returns:
- random_policy (:obj:`Policy.collect_mode`): The collect mode intefaces of the random policy.
"""
if cfg.policy.get('transition_with_policy_data', False):
return policy
else:
action_space = env.action_space
return PolicyFactory.get_random_policy(policy, action_space=action_space)