|
from typing import List, Dict, Any, Tuple, Union |
|
from collections import namedtuple |
|
import copy |
|
import torch |
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
from ding.utils import POLICY_REGISTRY, split_data_generator, RunningMeanStd |
|
from ding.utils.data import default_collate, default_decollate |
|
from ding.torch_utils import Adam, to_device |
|
from ding.rl_utils import get_gae_with_default_last_value, get_train_sample, gae, gae_data, get_gae, \ |
|
ppo_policy_data, ppo_policy_error, ppo_value_data, ppo_value_error, ppg_data, ppg_joint_error |
|
from ding.model import model_wrap |
|
from .base_policy import Policy |
|
|
|
|
|
class ExperienceDataset(Dataset): |
|
""" |
|
Overview: |
|
A dataset class for storing and accessing experience data. |
|
|
|
Interface: |
|
``__init__``, ``__len__``, ``__getitem__``. |
|
""" |
|
|
|
def __init__(self, data): |
|
""" |
|
Arguments: |
|
- data (:obj:`dict`): A dictionary containing the experience data, where the keys represent the data types \ |
|
and the values are the corresponding data arrays. |
|
""" |
|
super().__init__() |
|
self.data = data |
|
|
|
def __len__(self): |
|
return list(self.data.values())[0].shape[0] |
|
|
|
def __getitem__(self, ind): |
|
data = {} |
|
for key in self.data.keys(): |
|
data[key] = self.data[key][ind] |
|
return data |
|
|
|
|
|
def create_shuffled_dataloader(data, batch_size): |
|
ds = ExperienceDataset(data) |
|
return DataLoader(ds, batch_size=batch_size, shuffle=True) |
|
|
|
|
|
@POLICY_REGISTRY.register('ppg') |
|
class PPGPolicy(Policy): |
|
""" |
|
Overview: |
|
Policy class of PPG algorithm. PPG is a policy gradient algorithm with auxiliary phase training. \ |
|
The auxiliary phase training is proposed to distill the value into the policy network, \ |
|
while making sure the policy network does not change the action predictions (kl div loss). \ |
|
Paper link: https://arxiv.org/abs/2009.04416. |
|
|
|
Interface: |
|
``_init_learn``, ``_data_preprocess_learn``, ``_forward_learn``, ``_state_dict_learn``, \ |
|
``_load_state_dict_learn``, ``_init_collect``, ``_forward_collect``, ``_process_transition``, \ |
|
``_get_train_sample``, ``_get_batch_size``, ``_init_eval``, ``_forward_eval``, ``default_model``, \ |
|
``_monitor_vars_learn``, ``learn_aux``. |
|
Config: |
|
== ==================== ======== ============== ======================================== ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ==================== ======== ============== ======================================== ======================= |
|
1 ``type`` str ppg | RL policy register name, refer to | this arg is optional, |
|
| registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- |
|
| erent from modes |
|
3 ``on_policy`` bool True | Whether the RL algorithm is on-policy |
|
| or off-policy |
|
4. ``priority`` bool False | Whether use priority(PER) | priority sample, |
|
| update priority |
|
5 | ``priority_`` bool False | Whether use Importance Sampling | IS weight |
|
| ``IS_weight`` | Weight to correct biased update. |
|
6 | ``learn.update`` int 5 | How many updates(iterations) to train | this args can be vary |
|
| ``_per_collect`` | after collector's one collection. Only | from envs. Bigger val |
|
| valid in serial training | means more off-policy |
|
7 | ``learn.value_`` float 1.0 | The loss weight of value network | policy network weight |
|
| ``weight`` | is set to 1 |
|
8 | ``learn.entropy_`` float 0.01 | The loss weight of entropy | policy network weight |
|
| ``weight`` | regularization | is set to 1 |
|
9 | ``learn.clip_`` float 0.2 | PPO clip ratio |
|
| ``ratio`` |
|
10 | ``learn.adv_`` bool False | Whether to use advantage norm in |
|
| ``norm`` | a whole training batch |
|
11 | ``learn.aux_`` int 5 | The frequency(normal update times) |
|
| ``freq`` | of auxiliary phase training |
|
12 | ``learn.aux_`` int 6 | The training epochs of auxiliary |
|
| ``train_epoch`` | phase |
|
13 | ``learn.aux_`` int 1 | The loss weight of behavioral_cloning |
|
| ``bc_weight`` | in auxiliary phase |
|
14 | ``collect.dis`` float 0.99 | Reward's future discount factor, aka. | may be 1 when sparse |
|
| ``count_factor`` | gamma | reward env |
|
15 | ``collect.gae_`` float 0.95 | GAE lambda factor for the balance |
|
| ``lambda`` | of bias and variance(1-step td and mc) |
|
== ==================== ======== ============== ======================================== ======================= |
|
""" |
|
config = dict( |
|
|
|
type='ppg', |
|
|
|
cuda=False, |
|
|
|
on_policy=True, |
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
learn=dict( |
|
actor_epoch_per_collect=1, |
|
critic_epoch_per_collect=1, |
|
batch_size=64, |
|
learning_rate=0.001, |
|
|
|
|
|
|
|
|
|
value_weight=0.5, |
|
|
|
entropy_weight=0.01, |
|
|
|
clip_ratio=0.2, |
|
value_norm=False, |
|
|
|
adv_norm=False, |
|
|
|
aux_freq=8, |
|
|
|
aux_train_epoch=6, |
|
|
|
aux_bc_weight=1, |
|
grad_clip_type='clip_norm', |
|
grad_clip_value=10, |
|
ignore_done=False, |
|
), |
|
collect=dict( |
|
|
|
unroll_len=1, |
|
|
|
|
|
|
|
|
|
discount_factor=0.99, |
|
|
|
gae_lambda=0.95, |
|
), |
|
eval=dict(), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
""" |
|
Overview: |
|
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ |
|
automatically call this method to get the default model setting and create model. |
|
|
|
Returns: |
|
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. |
|
""" |
|
return 'ppg', ['ding.model.template.ppg'] |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For PPG, it mainly \ |
|
contains optimizer, algorithm-specific arguments such as aux_bc_weight and aux_train_epoch. This method \ |
|
also executes some special network initializations and prepares running mean/std monitor for value. \ |
|
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
|
|
self._optimizer_ac = Adam(self._model.actor_critic.parameters(), lr=self._cfg.learn.learning_rate) |
|
self._optimizer_aux_critic = Adam(self._model.aux_critic.parameters(), lr=self._cfg.learn.learning_rate) |
|
self._learn_model = model_wrap(self._model, wrapper_name='base') |
|
|
|
|
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPG" |
|
self._value_weight = self._cfg.learn.value_weight |
|
self._entropy_weight = self._cfg.learn.entropy_weight |
|
self._value_norm = self._cfg.learn.value_norm |
|
if self._value_norm: |
|
self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device) |
|
self._clip_ratio = self._cfg.learn.clip_ratio |
|
self._adv_norm = self._cfg.learn.adv_norm |
|
|
|
|
|
self._learn_model.reset() |
|
|
|
|
|
self._aux_train_epoch = self._cfg.learn.aux_train_epoch |
|
self._train_iteration = 0 |
|
self._aux_memories = [] |
|
self._aux_bc_weight = self._cfg.learn.aux_bc_weight |
|
|
|
def _data_preprocess_learn(self, data: List[Any]) -> dict: |
|
""" |
|
Overview: |
|
Preprocess the data to fit the required data format for learning, including \ |
|
collate(stack data into batch), ignore done(in some fake terminate env),\ |
|
prepare loss weight per training sample, and cpu tensor to cuda. |
|
Arguments: |
|
- data (:obj:`List[Dict[str, Any]]`): The data collected from collect function. |
|
Returns: |
|
- data (:obj:`Dict[str, Any]`): The processed data, including at least ['done', 'weight']. |
|
""" |
|
|
|
data = default_collate(data) |
|
ignore_done = self._cfg.learn.ignore_done |
|
if ignore_done: |
|
data['done'] = None |
|
else: |
|
data['done'] = data['done'].float() |
|
data['weight'] = None |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
return data |
|
|
|
def _forward_learn(self, data: dict) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Forward and backward function of learn mode. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Input data used for policy forward, including the \ |
|
collected training samples from replay buffer. For each element in dict, the key of the \ |
|
dict is the name of data items and the value is the corresponding data. Usually, the value is \ |
|
torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \ |
|
often need to first be stacked in the batch dimension by some utility functions such as \ |
|
``default_preprocess_learn``. \ |
|
For PPG, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \ |
|
``reward``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys such as ``weight``. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ |
|
recorded in text log and tensorboard, values are python scalar or a list of scalars. \ |
|
For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for PPGPolicy: ``ding.policy.tests.test_ppgs``. |
|
""" |
|
data = self._data_preprocess_learn(data) |
|
|
|
|
|
|
|
self._learn_model.train() |
|
return_infos = [] |
|
if self._value_norm: |
|
unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std |
|
data['return'] = unnormalized_return / self._running_mean_std.std |
|
self._running_mean_std.update(unnormalized_return.cpu().numpy()) |
|
else: |
|
data['return'] = data['adv'] + data['value'] |
|
|
|
for epoch in range(self._cfg.learn.actor_epoch_per_collect): |
|
for policy_data in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True): |
|
policy_adv = policy_data['adv'] |
|
if self._adv_norm: |
|
|
|
policy_adv = (policy_adv - policy_adv.mean()) / (policy_adv.std() + 1e-8) |
|
|
|
policy_output = self._learn_model.forward(policy_data['obs'], mode='compute_actor') |
|
policy_error_data = ppo_policy_data( |
|
policy_output['logit'], policy_data['logit'], policy_data['action'], policy_adv, |
|
policy_data['weight'] |
|
) |
|
ppo_policy_loss, ppo_info = ppo_policy_error(policy_error_data, self._clip_ratio) |
|
policy_loss = ppo_policy_loss.policy_loss - self._entropy_weight * ppo_policy_loss.entropy_loss |
|
self._optimizer_ac.zero_grad() |
|
policy_loss.backward() |
|
self._optimizer_ac.step() |
|
|
|
for epoch in range(self._cfg.learn.critic_epoch_per_collect): |
|
for value_data in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True): |
|
value_adv = value_data['adv'] |
|
return_ = value_data['return'] |
|
if self._adv_norm: |
|
|
|
value_adv = (value_adv - value_adv.mean()) / (value_adv.std() + 1e-8) |
|
|
|
value_output = self._learn_model.forward(value_data['obs'], mode='compute_critic') |
|
value_error_data = ppo_value_data( |
|
value_output['value'], value_data['value'], return_, value_data['weight'] |
|
) |
|
value_loss = self._value_weight * ppo_value_error(value_error_data, self._clip_ratio) |
|
self._optimizer_aux_critic.zero_grad() |
|
value_loss.backward() |
|
self._optimizer_aux_critic.step() |
|
|
|
data['return_'] = data['return'] |
|
|
|
self._aux_memories.append(copy.deepcopy(data)) |
|
|
|
self._train_iteration += 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self._train_iteration % self._cfg.learn.aux_freq == 0: |
|
aux_loss, bc_loss, aux_value_loss = self.learn_aux() |
|
return { |
|
'policy_cur_lr': self._optimizer_ac.defaults['lr'], |
|
'value_cur_lr': self._optimizer_aux_critic.defaults['lr'], |
|
'policy_loss': ppo_policy_loss.policy_loss.item(), |
|
'value_loss': value_loss.item(), |
|
'entropy_loss': ppo_policy_loss.entropy_loss.item(), |
|
'policy_adv_abs_max': policy_adv.abs().max().item(), |
|
'approx_kl': ppo_info.approx_kl, |
|
'clipfrac': ppo_info.clipfrac, |
|
'aux_value_loss': aux_value_loss, |
|
'auxiliary_loss': aux_loss, |
|
'behavioral_cloning_loss': bc_loss, |
|
} |
|
else: |
|
return { |
|
'policy_cur_lr': self._optimizer_ac.defaults['lr'], |
|
'value_cur_lr': self._optimizer_aux_critic.defaults['lr'], |
|
'policy_loss': ppo_policy_loss.policy_loss.item(), |
|
'value_loss': value_loss.item(), |
|
'entropy_loss': ppo_policy_loss.entropy_loss.item(), |
|
'policy_adv_abs_max': policy_adv.abs().max().item(), |
|
'approx_kl': ppo_info.approx_kl, |
|
'clipfrac': ppo_info.clipfrac, |
|
} |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Return the state_dict of learn mode, usually including model and optimizer. |
|
Returns: |
|
- state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring. |
|
""" |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'optimizer_ac': self._optimizer_ac.state_dict(), |
|
'optimizer_aux_critic': self._optimizer_aux_critic.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
""" |
|
Overview: |
|
Load the state_dict variable into policy learn mode. |
|
Arguments: |
|
- state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.\ |
|
When the value is distilled into the policy network, we need to make sure the policy \ |
|
network does not change the action predictions, we need two optimizers, \ |
|
_optimizer_ac is used in policy net, and _optimizer_aux_critic is used in value net. |
|
|
|
.. tip:: |
|
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ |
|
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ |
|
complicated operation. |
|
""" |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._optimizer_ac.load_state_dict(state_dict['optimizer_ac']) |
|
self._optimizer_aux_critic.load_state_dict(state_dict['optimizer_aux_critic']) |
|
|
|
def _init_collect(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the collect mode of policy, including related attributes and modules. For PPG, it contains the \ |
|
collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \ |
|
discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda. |
|
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ |
|
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. |
|
""" |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') |
|
|
|
self._collect_model.reset() |
|
self._gamma = self._cfg.collect.discount_factor |
|
self._gae_lambda = self._cfg.collect.gae_lambda |
|
|
|
def _forward_collect(self, data: dict) -> dict: |
|
""" |
|
Overview: |
|
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ |
|
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ |
|
data, such as the action to interact with the envs. |
|
|
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ |
|
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. |
|
|
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ |
|
other necessary data (action logit and value) for learn mode defined in \ |
|
``self._process_transition`` method. The key of the dict is the same as the input data, \ |
|
i.e. environment id. |
|
|
|
.. tip:: |
|
If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \ |
|
related data as extra keyword arguments of this method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for PPGPolicy: ``ding.policy.tests.test_ppg``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(data, mode='compute_actor_critic') |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: |
|
""" |
|
Overview: |
|
Process and pack one timestep transition data into a dict, which can be directly used for training and \ |
|
saved in replay buffer. For PPG, it contains obs, next_obs, action, reward, done, logit, value. |
|
Arguments: |
|
- obs (:obj:`Any`): Env observation |
|
- model_output (:obj:`dict`): The output of the policy network with the observation \ |
|
as input. For PPG, it contains the state value, action and the logit of the action. |
|
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step \ |
|
method, except all the elements have been transformed into tensor data. Usually, it contains the next \ |
|
obs, reward, done, info, etc. |
|
Returns: |
|
- transition (:obj:`dict`): The processed transition data of the current timestep. |
|
|
|
.. note:: |
|
``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \ |
|
You can delete this field to save memory occupancy if you do not need nstep return. |
|
""" |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'logit': model_output['logit'], |
|
'action': model_output['action'], |
|
'value': model_output['value'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _get_train_sample(self, data: List[Dict[str, Any]]) -> Union[None, List[Any]]: |
|
""" |
|
Overview: |
|
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ |
|
can be used for training directly. In PPG, a train sample is a processed transition with new computed \ |
|
``adv`` field. This method is usually used in collectors to execute necessary. \ |
|
RL data preprocessing before training, which can help learner amortize revelant time consumption. \ |
|
In addition, you can also implement this method as an identity function and do the data processing \ |
|
in ``self._forward_learn`` method. |
|
Arguments: |
|
- data (:obj:`List[Dict[str, Any]]`): The trajectory data (a list of transition), each element is \ |
|
the same format as the return value of ``self._process_transition`` method. |
|
Returns: |
|
- samples (:obj:`dict`): The processed train samples, each element is the similar format \ |
|
as input transitions, but may contain more data for training, such as GAE advantage. |
|
""" |
|
data = to_device(data, self._device) |
|
if self._cfg.learn.ignore_done: |
|
data[-1]['done'] = False |
|
|
|
if data[-1]['done']: |
|
last_value = torch.zeros_like(data[-1]['value']) |
|
else: |
|
with torch.no_grad(): |
|
last_value = self._collect_model.forward( |
|
data[-1]['next_obs'].unsqueeze(0), mode='compute_actor_critic' |
|
)['value'] |
|
if self._value_norm: |
|
last_value *= self._running_mean_std.std |
|
for i in range(len(data)): |
|
data[i]['value'] *= self._running_mean_std.std |
|
data = get_gae( |
|
data, |
|
to_device(last_value, self._device), |
|
gamma=self._gamma, |
|
gae_lambda=self._gae_lambda, |
|
cuda=False, |
|
) |
|
if self._value_norm: |
|
for i in range(len(data)): |
|
data[i]['value'] /= self._running_mean_std.std |
|
|
|
return get_train_sample(data, self._unroll_len) |
|
|
|
def _get_batch_size(self) -> Dict[str, int]: |
|
""" |
|
Overview: |
|
Get learn batch size. In the PPG algorithm, different networks require different data.\ |
|
We need to get data['policy'] and data['value'] to train policy net and value net,\ |
|
this function is used to get the batch size of data['policy'] and data['value']. |
|
Returns: |
|
- output (:obj:`dict[str, int]`): Dict type data, including str type batch size and int type batch size. |
|
""" |
|
bs = self._cfg.learn.batch_size |
|
return {'policy': bs, 'value': bs} |
|
|
|
def _init_eval(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the eval mode of policy, including related attributes and modules. For PPG, it contains the \ |
|
eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete \ |
|
action). This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ |
|
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. |
|
""" |
|
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: dict) -> dict: |
|
""" |
|
Overview: |
|
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ |
|
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ |
|
action to interact with the envs. ``_forward_eval`` in PPG often uses deterministic sample method to get \ |
|
actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \ |
|
exploitation. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
|
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ |
|
key of the dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for PPGPolicy: ``ding.policy.tests.test_ppg``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
output = self._eval_model.forward(data, mode='compute_actor') |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- vars (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
return [ |
|
'policy_cur_lr', |
|
'value_cur_lr', |
|
'policy_loss', |
|
'value_loss', |
|
'entropy_loss', |
|
'policy_adv_abs_max', |
|
'approx_kl', |
|
'clipfrac', |
|
'aux_value_loss', |
|
'auxiliary_loss', |
|
'behavioral_cloning_loss', |
|
] |
|
|
|
def learn_aux(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Overview: |
|
The auxiliary phase training, where the value is distilled into the policy network. In PPG algorithm, \ |
|
we use the value function loss as the auxiliary objective, thereby sharing features between the policy \ |
|
and value function while minimizing distortions to the policy. We also use behavioral cloning loss to \ |
|
optimize the auxiliary objective while otherwise preserving the original policy. |
|
Returns: |
|
- aux_loss (:obj:`Tuple[torch.Tensor, torch.Tensor, torch.Tensor]`): Including average auxiliary loss\ |
|
average behavioral cloning loss, and average auxiliary value loss. |
|
""" |
|
aux_memories = self._aux_memories |
|
|
|
data = {} |
|
states = [] |
|
actions = [] |
|
return_ = [] |
|
old_values = [] |
|
weights = [] |
|
for memory in aux_memories: |
|
|
|
states.append(memory['obs']) |
|
actions.append(memory['action']) |
|
return_.append(memory['return_']) |
|
old_values.append(memory['value']) |
|
if memory['weight'] is None: |
|
weight = torch.ones_like(memory['action']) |
|
else: |
|
weight = torch.tensor(memory['weight']) |
|
weights.append(weight) |
|
|
|
data['obs'] = torch.cat(states) |
|
data['action'] = torch.cat(actions) |
|
data['return_'] = torch.cat(return_) |
|
data['value'] = torch.cat(old_values) |
|
data['weight'] = torch.cat(weights).float() |
|
|
|
with torch.no_grad(): |
|
data['logit_old'] = self._model.forward(data['obs'], mode='compute_actor')['logit'] |
|
|
|
|
|
dl = create_shuffled_dataloader(data, self._cfg.learn.batch_size) |
|
|
|
|
|
|
|
|
|
|
|
i = 0 |
|
auxiliary_loss_ = 0 |
|
behavioral_cloning_loss_ = 0 |
|
value_loss_ = 0 |
|
|
|
for epoch in range(self._aux_train_epoch): |
|
for data in dl: |
|
policy_output = self._model.forward(data['obs'], mode='compute_actor_critic') |
|
|
|
|
|
data_ppg = ppg_data( |
|
policy_output['logit'], data['logit_old'], data['action'], policy_output['value'], data['value'], |
|
data['return_'], data['weight'] |
|
) |
|
ppg_joint_loss = ppg_joint_error(data_ppg, self._clip_ratio) |
|
wb = self._aux_bc_weight |
|
total_loss = ppg_joint_loss.auxiliary_loss + wb * ppg_joint_loss.behavioral_cloning_loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
self._optimizer_ac.zero_grad() |
|
total_loss.backward() |
|
self._optimizer_ac.step() |
|
|
|
|
|
|
|
values = self._model.forward(data['obs'], mode='compute_critic')['value'] |
|
data_aux = ppo_value_data(values, data['value'], data['return_'], data['weight']) |
|
|
|
value_loss = ppo_value_error(data_aux, self._clip_ratio) |
|
|
|
self._optimizer_aux_critic.zero_grad() |
|
value_loss.backward() |
|
self._optimizer_aux_critic.step() |
|
|
|
auxiliary_loss_ += ppg_joint_loss.auxiliary_loss.item() |
|
behavioral_cloning_loss_ += ppg_joint_loss.behavioral_cloning_loss.item() |
|
value_loss_ += value_loss.item() |
|
i += 1 |
|
|
|
self._aux_memories = [] |
|
|
|
return auxiliary_loss_ / i, behavioral_cloning_loss_ / i, value_loss_ / i |
|
|
|
|
|
@POLICY_REGISTRY.register('ppg_offpolicy') |
|
class PPGOffPolicy(Policy): |
|
""" |
|
Overview: |
|
Policy class of PPG algorithm with off-policy training mode. Off-policy PPG contains two different data \ |
|
max_use buffers. The policy buffer offers data for policy phase , while the value buffer provides auxiliary \ |
|
phase's data. The whole training procedure is similar to off-policy PPO but execute additional auxiliary \ |
|
phase with a fixed frequency. |
|
Interface: |
|
``_init_learn``, ``_data_preprocess_learn``, ``_forward_learn``, ``_state_dict_learn``, \ |
|
``_load_state_dict_learn``, ``_init_collect``, ``_forward_collect``, ``_process_transition``, \ |
|
``_get_train_sample``, ``_get_batch_size``, ``_init_eval``, ``_forward_eval``, ``default_model``, \ |
|
``_monitor_vars_learn``, ``learn_aux``. |
|
Config: |
|
== ==================== ======== ============== ======================================== ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ==================== ======== ============== ======================================== ======================= |
|
1 ``type`` str ppg | RL policy register name, refer to | this arg is optional, |
|
| registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- |
|
| erent from modes |
|
3 ``on_policy`` bool True | Whether the RL algorithm is on-policy |
|
| or off-policy |
|
4. ``priority`` bool False | Whether use priority(PER) | priority sample, |
|
| update priority |
|
5 | ``priority_`` bool False | Whether use Importance Sampling | IS weight |
|
| ``IS_weight`` | Weight to correct biased update. |
|
6 | ``learn.update`` int 5 | How many updates(iterations) to train | this args can be vary |
|
| ``_per_collect`` | after collector's one collection. Only | from envs. Bigger val |
|
| valid in serial training | means more off-policy |
|
7 | ``learn.value_`` float 1.0 | The loss weight of value network | policy network weight |
|
| ``weight`` | is set to 1 |
|
8 | ``learn.entropy_`` float 0.01 | The loss weight of entropy | policy network weight |
|
| ``weight`` | regularization | is set to 1 |
|
9 | ``learn.clip_`` float 0.2 | PPO clip ratio |
|
| ``ratio`` |
|
10 | ``learn.adv_`` bool False | Whether to use advantage norm in |
|
| ``norm`` | a whole training batch |
|
11 | ``learn.aux_`` int 5 | The frequency(normal update times) |
|
| ``freq`` | of auxiliary phase training |
|
12 | ``learn.aux_`` int 6 | The training epochs of auxiliary |
|
| ``train_epoch`` | phase |
|
13 | ``learn.aux_`` int 1 | The loss weight of behavioral_cloning |
|
| ``bc_weight`` | in auxiliary phase |
|
14 | ``collect.dis`` float 0.99 | Reward's future discount factor, aka. | may be 1 when sparse |
|
| ``count_factor`` | gamma | reward env |
|
15 | ``collect.gae_`` float 0.95 | GAE lambda factor for the balance |
|
| ``lambda`` | of bias and variance(1-step td and mc) |
|
== ==================== ======== ============== ======================================== ======================= |
|
""" |
|
config = dict( |
|
|
|
type='ppg_offpolicy', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
priority=False, |
|
|
|
priority_IS_weight=False, |
|
|
|
transition_with_policy_data=True, |
|
learn=dict( |
|
update_per_collect=5, |
|
batch_size=64, |
|
learning_rate=0.001, |
|
|
|
|
|
|
|
|
|
value_weight=0.5, |
|
|
|
entropy_weight=0.01, |
|
|
|
clip_ratio=0.2, |
|
|
|
adv_norm=False, |
|
|
|
aux_freq=5, |
|
|
|
aux_train_epoch=6, |
|
|
|
aux_bc_weight=1, |
|
ignore_done=False, |
|
), |
|
collect=dict( |
|
|
|
unroll_len=1, |
|
|
|
|
|
|
|
|
|
discount_factor=0.99, |
|
|
|
gae_lambda=0.95, |
|
), |
|
eval=dict(), |
|
other=dict( |
|
replay_buffer=dict( |
|
|
|
multi_buffer=True, |
|
policy=dict(replay_buffer_size=1000, ), |
|
value=dict(replay_buffer_size=1000, ), |
|
), |
|
), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
""" |
|
Overview: |
|
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \ |
|
automatically call this method to get the default model setting and create model. |
|
|
|
Returns: |
|
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names. |
|
|
|
.. note:: |
|
The user can define and use customized network model but must obey the same inferface definition indicated \ |
|
by import_names path. |
|
""" |
|
return 'ppg', ['ding.model.template.ppg'] |
|
|
|
def _init_learn(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the learn mode of policy, including related attributes and modules. For PPG, it mainly \ |
|
contains optimizer, algorithm-specific arguments such as aux_bc_weight and aux_train_epoch. This method \ |
|
also executes some special network initializations and prepares running mean/std monitor for value. \ |
|
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \ |
|
and ``_load_state_dict_learn`` methods. |
|
|
|
.. note:: |
|
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \ |
|
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``. |
|
""" |
|
|
|
self._optimizer_ac = Adam(self._model.actor_critic.parameters(), lr=self._cfg.learn.learning_rate) |
|
self._optimizer_aux_critic = Adam(self._model.aux_critic.parameters(), lr=self._cfg.learn.learning_rate) |
|
self._learn_model = model_wrap(self._model, wrapper_name='base') |
|
|
|
|
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPG" |
|
self._value_weight = self._cfg.learn.value_weight |
|
self._entropy_weight = self._cfg.learn.entropy_weight |
|
self._clip_ratio = self._cfg.learn.clip_ratio |
|
self._adv_norm = self._cfg.learn.adv_norm |
|
|
|
|
|
self._learn_model.reset() |
|
|
|
|
|
self._aux_train_epoch = self._cfg.learn.aux_train_epoch |
|
self._train_iteration = 0 |
|
self._aux_memories = [] |
|
self._aux_bc_weight = self._cfg.learn.aux_bc_weight |
|
|
|
def _data_preprocess_learn(self, data: List[Any]) -> dict: |
|
""" |
|
Overview: |
|
Preprocess the data to fit the required data format for learning, including \ |
|
collate(stack data into batch), ignore done(in some fake terminate env),\ |
|
prepare loss weight per training sample, and cpu tensor to cuda. |
|
Arguments: |
|
- data (:obj:`List[Dict[str, Any]]`): The data collected from collect function. |
|
Returns: |
|
- data (:obj:`Dict[str, Any]`): The processed data, including at least ['done', 'weight']. |
|
""" |
|
|
|
for k, data_item in data.items(): |
|
data_item = default_collate(data_item) |
|
ignore_done = self._cfg.learn.ignore_done |
|
if ignore_done: |
|
data_item['done'] = None |
|
else: |
|
data_item['done'] = data_item['done'].float() |
|
data_item['weight'] = None |
|
data[k] = data_item |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
return data |
|
|
|
def _forward_learn(self, data: dict) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Forward and backward function of learn mode. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Input data used for policy forward, including the \ |
|
collected training samples from replay buffer. For each element in dict, the key of the \ |
|
dict is the name of data items and the value is the corresponding data. Usually, \ |
|
the class type of value is either torch.Tensor or np.ndarray, or a dict/list containing \ |
|
either torch.Tensor or np.ndarray items In the ``_forward_learn`` method, data \ |
|
often need to first be stacked in the batch dimension by some utility functions such as \ |
|
``default_preprocess_learn``. \ |
|
For PPGOff, each element in list is a dict containing at least the following keys: ``obs``, \ |
|
``action``, ``reward``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys \ |
|
such as ``weight``. |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Dict type data, a info dict indicated training result, which will be \ |
|
recorded in text log and tensorboard, values are python scalar or a list of scalars. \ |
|
For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method. |
|
|
|
ReturnsKeys: |
|
- necessary: "current lr", "total_loss", "policy_loss", "value_loss", "entropy_loss", \ |
|
"adv_abs_max", "approx_kl", "clipfrac", \ |
|
"aux_value_loss", "auxiliary_loss", "behavioral_cloning_loss". |
|
|
|
- current_lr (:obj:`float`): Current learning rate. |
|
- total_loss (:obj:`float`): The calculated loss. |
|
- policy_loss (:obj:`float`): The policy(actor) loss of ppg. |
|
- value_loss (:obj:`float`): The value(critic) loss of ppg. |
|
- entropy_loss (:obj:`float`): The entropy loss. |
|
- auxiliary_loss (:obj:`float`): The auxiliary loss, we use the value function loss \ |
|
as the auxiliary objective, thereby sharing features between the policy and value function\ |
|
while minimizing distortions to the policy. |
|
- aux_value_loss (:obj:`float`): The auxiliary value loss, we need to train the value network extra \ |
|
during the auxiliary phase, it's the value loss we train the value network during auxiliary phase. |
|
- behavioral_cloning_loss (:obj:`float`): The behavioral cloning loss, used to optimize the auxiliary\ |
|
objective while otherwise preserving the original policy. |
|
""" |
|
data = self._data_preprocess_learn(data) |
|
|
|
|
|
|
|
self._learn_model.train() |
|
policy_data, value_data = data['policy'], data['value'] |
|
policy_adv, value_adv = policy_data['adv'], value_data['adv'] |
|
return_ = value_data['value'] + value_adv |
|
if self._adv_norm: |
|
|
|
policy_adv = (policy_adv - policy_adv.mean()) / (policy_adv.std() + 1e-8) |
|
value_adv = (value_adv - value_adv.mean()) / (value_adv.std() + 1e-8) |
|
|
|
policy_output = self._learn_model.forward(policy_data['obs'], mode='compute_actor') |
|
policy_error_data = ppo_policy_data( |
|
policy_output['logit'], policy_data['logit'], policy_data['action'], policy_adv, policy_data['weight'] |
|
) |
|
ppo_policy_loss, ppo_info = ppo_policy_error(policy_error_data, self._clip_ratio) |
|
policy_loss = ppo_policy_loss.policy_loss - self._entropy_weight * ppo_policy_loss.entropy_loss |
|
self._optimizer_ac.zero_grad() |
|
policy_loss.backward() |
|
self._optimizer_ac.step() |
|
|
|
|
|
value_output = self._learn_model.forward(value_data['obs'], mode='compute_critic') |
|
value_error_data = ppo_value_data(value_output['value'], value_data['value'], return_, value_data['weight']) |
|
value_loss = self._value_weight * ppo_value_error(value_error_data, self._clip_ratio) |
|
self._optimizer_aux_critic.zero_grad() |
|
value_loss.backward() |
|
self._optimizer_aux_critic.step() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = data['value'] |
|
data['return_'] = return_.data |
|
self._aux_memories.append(copy.deepcopy(data)) |
|
|
|
self._train_iteration += 1 |
|
total_loss = policy_loss + value_loss |
|
if self._train_iteration % self._cfg.learn.aux_freq == 0: |
|
aux_loss, bc_loss, aux_value_loss = self.learn_aux() |
|
total_loss += aux_loss + bc_loss + aux_value_loss |
|
return { |
|
'policy_cur_lr': self._optimizer_ac.defaults['lr'], |
|
'value_cur_lr': self._optimizer_aux_critic.defaults['lr'], |
|
'policy_loss': ppo_policy_loss.policy_loss.item(), |
|
'value_loss': value_loss.item(), |
|
'entropy_loss': ppo_policy_loss.entropy_loss.item(), |
|
'policy_adv_abs_max': policy_adv.abs().max().item(), |
|
'approx_kl': ppo_info.approx_kl, |
|
'clipfrac': ppo_info.clipfrac, |
|
'aux_value_loss': aux_value_loss, |
|
'auxiliary_loss': aux_loss, |
|
'behavioral_cloning_loss': bc_loss, |
|
'total_loss': total_loss.item(), |
|
} |
|
else: |
|
return { |
|
'policy_cur_lr': self._optimizer_ac.defaults['lr'], |
|
'value_cur_lr': self._optimizer_aux_critic.defaults['lr'], |
|
'policy_loss': ppo_policy_loss.policy_loss.item(), |
|
'value_loss': value_loss.item(), |
|
'entropy_loss': ppo_policy_loss.entropy_loss.item(), |
|
'policy_adv_abs_max': policy_adv.abs().max().item(), |
|
'approx_kl': ppo_info.approx_kl, |
|
'clipfrac': ppo_info.clipfrac, |
|
'total_loss': total_loss.item(), |
|
} |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Return the state_dict of learn mode, usually including model and optimizer. |
|
Returns: |
|
- state_dict (:obj:`Dict[str, Any]`): the dict of current policy learn state, for saving and restoring. |
|
""" |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'optimizer_ac': self._optimizer_ac.state_dict(), |
|
'optimizer_aux_critic': self._optimizer_aux_critic.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
""" |
|
Overview: |
|
Load the state_dict variable into policy learn mode. |
|
Arguments: |
|
- state_dict (:obj:`Dict[str, Any]`): the dict of policy learn state saved before.\ |
|
When the value is distilled into the policy network, we need to make sure the policy \ |
|
network does not change the action predictions, we need two optimizers, \ |
|
_optimizer_ac is used in policy net, and _optimizer_aux_critic is used in value net. |
|
|
|
.. tip:: |
|
If you want to only load some parts of model, you can simply set the ``strict`` argument in \ |
|
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \ |
|
complicated operation. |
|
""" |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._optimizer_ac.load_state_dict(state_dict['optimizer_ac']) |
|
self._optimizer_aux_critic.load_state_dict(state_dict['optimizer_aux_critic']) |
|
|
|
def _init_collect(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the collect mode of policy, including related attributes and modules. For PPO, it contains the \ |
|
collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \ |
|
discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda. |
|
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \ |
|
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``. |
|
""" |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample') |
|
|
|
self._collect_model.reset() |
|
self._gamma = self._cfg.collect.discount_factor |
|
self._gae_lambda = self._cfg.collect.gae_lambda |
|
|
|
def _forward_collect(self, data: dict) -> dict: |
|
""" |
|
Overview: |
|
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \ |
|
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \ |
|
data, such as the action to interact with the envs. |
|
|
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ |
|
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. |
|
|
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \ |
|
other necessary data (action logit and value) for learn mode defined in \ |
|
``self._process_transition`` method. The key of the dict is the same as the input data, \ |
|
i.e. environment id. |
|
|
|
.. tip:: |
|
If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \ |
|
related data as extra keyword arguments of this method. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for PPGOffPolicy: ``ding.policy.tests.test_ppg``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(data, mode='compute_actor_critic') |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: |
|
""" |
|
Overview: |
|
Process and pack one timestep transition data into a dict, which can be directly used for training and \ |
|
saved in replay buffer. For PPG, it contains obs, next_obs, action, reward, done, logit, value. |
|
Arguments: |
|
- obs (:obj:`Any`): Env observation |
|
- model_output (:obj:`dict`): The output of the policy network with the observation \ |
|
as input. For PPG, it contains the state value, action and the logit of the action. |
|
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step \ |
|
method, except all the elements have been transformed into tensor data. Usually, it contains the next \ |
|
obs, reward, done, info, etc. |
|
Returns: |
|
- transition (:obj:`dict`): The processed transition data of the current timestep. |
|
|
|
.. note:: |
|
``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \ |
|
You can delete this field to save memory occupancy if you do not need nstep return. |
|
""" |
|
transition = { |
|
'obs': obs, |
|
'next_obs': timestep.obs, |
|
'logit': model_output['logit'], |
|
'action': model_output['action'], |
|
'value': model_output['value'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _get_train_sample(self, data: list) -> Union[None, List[Any]]: |
|
""" |
|
Overview: |
|
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \ |
|
can be used for training directly. In PPG, a train sample is a processed transition with new computed \ |
|
``adv`` field. This method is usually used in collectors to execute necessary. \ |
|
RL data preprocessing before training, which can help learner amortize revelant time consumption. \ |
|
In addition, you can also implement this method as an identity function and do the data processing \ |
|
in ``self._forward_learn`` method. |
|
Arguments: |
|
- data (:obj:`list`): The trajectory data (a list of transition), each element is \ |
|
the same format as the return value of ``self._process_transition`` method. |
|
Returns: |
|
- samples (:obj:`dict`): The processed train samples, each element is the similar format \ |
|
as input transitions, but may contain more data for training, such as GAE advantage. |
|
""" |
|
data = get_gae_with_default_last_value( |
|
data, |
|
data[-1]['done'], |
|
gamma=self._gamma, |
|
gae_lambda=self._gae_lambda, |
|
cuda=False, |
|
) |
|
data = get_train_sample(data, self._unroll_len) |
|
for d in data: |
|
d['buffer_name'] = ["policy", "value"] |
|
return data |
|
|
|
def _get_batch_size(self) -> Dict[str, int]: |
|
""" |
|
Overview: |
|
Get learn batch size. In the PPG algorithm, different networks require different data.\ |
|
We need to get data['policy'] and data['value'] to train policy net and value net,\ |
|
this function is used to get the batch size of data['policy'] and data['value']. |
|
Returns: |
|
- output (:obj:`dict[str, int]`): Dict type data, including str type batch size and int type batch size. |
|
""" |
|
bs = self._cfg.learn.batch_size |
|
return {'policy': bs, 'value': bs} |
|
|
|
def _init_eval(self) -> None: |
|
""" |
|
Overview: |
|
Initialize the eval mode of policy, including related attributes and modules. For PPG, it contains the \ |
|
eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete \ |
|
action). This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``. |
|
|
|
.. note:: |
|
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \ |
|
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``. |
|
""" |
|
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: dict) -> dict: |
|
r""" |
|
Overview: |
|
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \ |
|
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \ |
|
action to interact with the envs. ``_forward_eval`` in PPG often uses deterministic sample method to get \ |
|
actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \ |
|
exploitation. |
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): The input data used for policy forward, including at least the obs. The \ |
|
key of the dict is environment id and the value is the corresponding data of the env. |
|
|
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \ |
|
key of the dict is the same as the input data, i.e. environment id. |
|
|
|
.. note:: |
|
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \ |
|
For the data type that not supported, the main reason is that the corresponding model does not support it. \ |
|
You can implement you own model rather than use the default model. For more information, please raise an \ |
|
issue in GitHub repo and we will continue to follow up. |
|
|
|
.. note:: |
|
For more detailed examples, please refer to our unittest for PPGOffPolicy: ``ding.policy.tests.test_ppg``. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
output = self._eval_model.forward(data, mode='compute_actor') |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
""" |
|
Overview: |
|
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \ |
|
as text logger, tensorboard logger, will use these keys to save the corresponding data. |
|
Returns: |
|
- vars (:obj:`List[str]`): The list of the necessary keys to be logged. |
|
""" |
|
return [ |
|
'policy_cur_lr', |
|
'value_cur_lr', |
|
'policy_loss', |
|
'value_loss', |
|
'entropy_loss', |
|
'policy_adv_abs_max', |
|
'approx_kl', |
|
'clipfrac', |
|
'aux_value_loss', |
|
'auxiliary_loss', |
|
'behavioral_cloning_loss', |
|
] |
|
|
|
def learn_aux(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Overview: |
|
The auxiliary phase training, where the value is distilled into the policy network. In PPG algorithm, \ |
|
we use the value function loss as the auxiliary objective, thereby sharing features between the policy \ |
|
and value function while minimizing distortions to the policy. We also use behavioral cloning loss to \ |
|
optimize the auxiliary objective while otherwise preserving the original policy. |
|
Returns: |
|
- aux_loss (:obj:`Tuple[torch.Tensor, torch.Tensor, torch.Tensor]`): Including average auxiliary loss\ |
|
average behavioral cloning loss, and average auxiliary value loss. |
|
""" |
|
aux_memories = self._aux_memories |
|
|
|
data = {} |
|
states = [] |
|
actions = [] |
|
return_ = [] |
|
old_values = [] |
|
weights = [] |
|
for memory in aux_memories: |
|
|
|
states.append(memory['obs']) |
|
actions.append(memory['action']) |
|
return_.append(memory['return_']) |
|
old_values.append(memory['value']) |
|
if memory['weight'] is None: |
|
weight = torch.ones_like(memory['action']) |
|
else: |
|
weight = torch.tensor(memory['weight']) |
|
weights.append(weight) |
|
|
|
data['obs'] = torch.cat(states) |
|
data['action'] = torch.cat(actions) |
|
data['return_'] = torch.cat(return_) |
|
data['value'] = torch.cat(old_values) |
|
data['weight'] = torch.cat(weights) |
|
|
|
with torch.no_grad(): |
|
data['logit_old'] = self._model.forward(data['obs'], mode='compute_actor')['logit'] |
|
|
|
|
|
dl = create_shuffled_dataloader(data, self._cfg.learn.batch_size) |
|
|
|
|
|
|
|
|
|
|
|
i = 0 |
|
auxiliary_loss_ = 0 |
|
behavioral_cloning_loss_ = 0 |
|
value_loss_ = 0 |
|
|
|
for epoch in range(self._aux_train_epoch): |
|
for data in dl: |
|
policy_output = self._model.forward(data['obs'], mode='compute_actor_critic') |
|
|
|
|
|
data_ppg = ppg_data( |
|
policy_output['logit'], data['logit_old'], data['action'], policy_output['value'], data['value'], |
|
data['return_'], data['weight'] |
|
) |
|
ppg_joint_loss = ppg_joint_error(data_ppg, self._clip_ratio) |
|
wb = self._aux_bc_weight |
|
total_loss = ppg_joint_loss.auxiliary_loss + wb * ppg_joint_loss.behavioral_cloning_loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
self._optimizer_ac.zero_grad() |
|
total_loss.backward() |
|
self._optimizer_ac.step() |
|
|
|
|
|
|
|
values = self._model.forward(data['obs'], mode='compute_critic')['value'] |
|
data_aux = ppo_value_data(values, data['value'], data['return_'], data['weight']) |
|
|
|
value_loss = ppo_value_error(data_aux, self._clip_ratio) |
|
|
|
self._optimizer_aux_critic.zero_grad() |
|
value_loss.backward() |
|
self._optimizer_aux_critic.step() |
|
|
|
auxiliary_loss_ += ppg_joint_loss.auxiliary_loss.item() |
|
behavioral_cloning_loss_ += ppg_joint_loss.behavioral_cloning_loss.item() |
|
value_loss_ += value_loss.item() |
|
i += 1 |
|
|
|
self._aux_memories = [] |
|
|
|
return auxiliary_loss_ / i, behavioral_cloning_loss_ / i, value_loss_ / i |
|
|