|
from typing import List, Dict, Any, Tuple, Union |
|
from collections import namedtuple |
|
import torch |
|
|
|
from ding.rl_utils import get_train_sample |
|
from ding.torch_utils import Adam, to_device |
|
from ding.utils import POLICY_REGISTRY, split_data_generator |
|
from ding.utils.data import default_collate, default_decollate |
|
from .base_policy import Policy |
|
from ..model import model_wrap |
|
|
|
|
|
@POLICY_REGISTRY.register('prompt_pg') |
|
class PromptPGPolicy(Policy): |
|
r""" |
|
Overview: |
|
Policy class of Prompt Policy Gradient (PromptPG) algorithm. |
|
Link of the original paper: https://arxiv.org/abs/2209.14610 |
|
""" |
|
config = dict( |
|
|
|
type='prompt_pg', |
|
|
|
cuda=True, |
|
|
|
on_policy=True, |
|
|
|
deterministic_eval=True, |
|
learn=dict( |
|
|
|
batch_size=64, |
|
|
|
learning_rate=0.001, |
|
|
|
|
|
|
|
|
|
entropy_weight=0.01, |
|
|
|
grad_norm=5, |
|
|
|
ignore_done=False, |
|
), |
|
collect=dict( |
|
|
|
|
|
|
|
unroll_len=1, |
|
|
|
|
|
|
|
|
|
discount_factor=0, |
|
collector=dict(get_train_sample=True), |
|
), |
|
eval=dict(), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
return 'language_transformer', ['ding.model.template.language_transformer'] |
|
|
|
def _init_learn(self) -> None: |
|
r""" |
|
Overview: |
|
Learn mode init method. Called by ``self.__init__``. |
|
Init the optimizer, algorithm config, main and target models. |
|
""" |
|
|
|
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) |
|
|
|
self._entropy_weight = self._cfg.learn.entropy_weight |
|
self._grad_norm = self._cfg.learn.grad_norm |
|
self._learn_model = self._model |
|
|
|
def _forward_learn(self, data: dict) -> Dict[str, Any]: |
|
r""" |
|
Overview: |
|
Forward and backward function of learn mode. |
|
Arguments: |
|
- data (:obj:`dict`): Dict type data, including at least ['obs', 'action', 'reward'] |
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Including current lr and loss. |
|
""" |
|
self._model.train() |
|
|
|
return_infos = [] |
|
for i in range(0, len(data), self._cfg.learn.batch_size): |
|
batch = default_collate(data[i:i + self._cfg.learn.batch_size]) |
|
if self._cuda: |
|
batch = to_device(batch, self._device) |
|
|
|
|
|
train_samples, cand_samples = batch["obs"]["train_sample"], batch["obs"]["candidate_samples"] |
|
for ii in range(len(cand_samples)): |
|
cand_samples[ii] = cand_samples[ii][0] |
|
output = self._learn_model.forward(train_samples, cand_samples) |
|
return_ = batch['return'] |
|
|
|
|
|
real_act = batch['action'] |
|
|
|
total_policy_loss, total_entropy_loss = 0, 0 |
|
for ii in range(self._cfg.shot_number): |
|
log_prob = output['dist'].log_prob(real_act[:, ii]) |
|
policy_loss = -(log_prob * return_).mean() |
|
total_policy_loss += policy_loss |
|
total_entropy_loss += -self._cfg.learn.entropy_weight * output['dist'].entropy().mean() |
|
total_loss = total_entropy_loss + total_policy_loss |
|
|
|
|
|
self._optimizer.zero_grad() |
|
total_loss.backward() |
|
|
|
grad_norm = torch.nn.utils.clip_grad_norm_( |
|
list(self._learn_model.parameters()), |
|
max_norm=self._grad_norm, |
|
) |
|
self._optimizer.step() |
|
|
|
|
|
return_info = { |
|
'cur_lr': self._optimizer.param_groups[0]['lr'], |
|
'total_loss': total_loss.item(), |
|
'policy_loss': total_policy_loss.item(), |
|
'entropy_loss': total_entropy_loss.item(), |
|
'return_abs_max': return_.abs().max().item(), |
|
'grad_norm': grad_norm, |
|
} |
|
return_infos.append(return_info) |
|
return return_infos |
|
|
|
def _init_collect(self) -> None: |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
self._gamma = self._cfg.collect.discount_factor |
|
self._collect_model = model_wrap(self._model, wrapper_name='combination_multinomial_sample') |
|
|
|
def _forward_collect(self, data: dict) -> dict: |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
self._model.eval() |
|
with torch.no_grad(): |
|
|
|
for ii in range(len(data['candidate_samples'])): |
|
data['candidate_samples'][ii] = data['candidate_samples'][ii][0] |
|
output = self._collect_model.forward(self._cfg.shot_number, data['train_sample'], data['candidate_samples']) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: |
|
r""" |
|
Overview: |
|
Generate dict type transition data from inputs. |
|
Arguments: |
|
- obs (:obj:`Any`): Env observation |
|
- model_output (:obj:`dict`): Output of collect model, including at least ['action'] |
|
- timestep (:obj:`namedtuple`): Output after env step, including at least ['obs', 'reward', 'done'] \ |
|
(here 'obs' indicates obs after env step). |
|
Returns: |
|
- transition (:obj:`dict`): Dict type transition data. |
|
""" |
|
return { |
|
'obs': obs, |
|
'action': model_output['action'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
|
|
def _get_train_sample(self, data: list) -> Union[None, List[Any]]: |
|
r""" |
|
Overview: |
|
Get the trajectory and the n step return data, then sample from the n_step return data |
|
Arguments: |
|
- data (:obj:`list`): The trajectory's buffer list |
|
Returns: |
|
- samples (:obj:`dict`): The training samples generated |
|
""" |
|
if self._cfg.learn.ignore_done: |
|
raise NotImplementedError |
|
|
|
R = 0. |
|
for i in reversed(range(len(data))): |
|
R = self._gamma * R + data[i]['reward'] |
|
data[i]['return'] = R |
|
return get_train_sample(data, self._unroll_len) |
|
|
|
def _init_eval(self) -> None: |
|
self._eval_model = model_wrap(self._model, wrapper_name='combination_argmax_sample') |
|
|
|
def _forward_eval(self, data: dict) -> dict: |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
self._model.eval() |
|
with torch.no_grad(): |
|
|
|
for ii in range(len(data['candidate_samples'])): |
|
data['candidate_samples'][ii] = data['candidate_samples'][ii][0] |
|
output = self._eval_model.forward(self._cfg.shot_number, data['train_sample'], data['candidate_samples']) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
return super()._monitor_vars_learn() + ['policy_loss', 'entropy_loss', 'return_abs_max', 'grad_norm'] |
|
|