|
import copy |
|
from collections import namedtuple |
|
from typing import List, Dict, Any, Tuple, Union, Optional |
|
|
|
import torch |
|
|
|
from ding.model import model_wrap |
|
from ding.rl_utils import q_nstep_td_error_with_rescale, get_nstep_return_data, \ |
|
get_train_sample, dqfd_nstep_td_error, dqfd_nstep_td_error_with_rescale, dqfd_nstep_td_data |
|
from ding.torch_utils import Adam, to_device |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import timestep_collate, default_collate, default_decollate |
|
from .base_policy import Policy |
|
|
|
|
|
@POLICY_REGISTRY.register('r2d3') |
|
class R2D3Policy(Policy): |
|
r""" |
|
Overview: |
|
Policy class of r2d3, from paper `Making Efficient Use of Demonstrations to Solve Hard Exploration Problems` . |
|
|
|
Config: |
|
== ==================== ======== ============== ======================================== ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ==================== ======== ============== ======================================== ======================= |
|
1 ``type`` str dqn | RL policy register name, refer to | This arg is optional, |
|
| registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool False | Whether to use cuda for network | This arg can be diff- |
|
| erent from modes |
|
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy |
|
| or off-policy |
|
4 ``priority`` bool False | Whether use priority(PER) | Priority sample, |
|
| update priority |
|
5 | ``priority_IS`` bool False | Whether use Importance Sampling Weight |
|
| ``_weight`` | to correct biased update. If True, |
|
| priority must be True. |
|
6 | ``discount_`` float 0.997, | Reward's future discount factor, aka. | May be 1 when sparse |
|
| ``factor`` [0.95, 0.999] | gamma | reward env |
|
7 ``nstep`` int 3, | N-step reward discount sum for target |
|
[3, 5] | q_value estimation |
|
8 ``burnin_step`` int 2 | The timestep of burnin operation, |
|
| which is designed to RNN hidden state |
|
| difference caused by off-policy |
|
9 | ``learn.update`` int 1 | How many updates(iterations) to train | This args can be vary |
|
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val |
|
| valid in serial training | means more off-policy |
|
10 | ``learn.batch_`` int 64 | The number of samples of an iteration |
|
| ``size`` |
|
11 | ``learn.learning`` float 0.001 | Gradient step length of an iteration. |
|
| ``_rate`` |
|
12 | ``learn.value_`` bool True | Whether use value_rescale function for |
|
| ``rescale`` | predicted value |
|
13 | ``learn.target_`` int 100 | Frequence of target network update. | Hard(assign) update |
|
| ``update_freq`` |
|
14 | ``learn.ignore_`` bool False | Whether ignore done for target value | Enable it for some |
|
| ``done`` | calculation. | fake termination env |
|
15 ``collect.n_sample`` int [8, 128] | The number of training samples of a | It varies from |
|
| call of collector. | different envs |
|
16 | ``collect.unroll`` int 1 | unroll length of an iteration | In RNN, unroll_len>1 |
|
| ``_len`` |
|
== ==================== ======== ============== ======================================== ======================= |
|
""" |
|
config = dict( |
|
|
|
type='r2d3', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=True, |
|
|
|
priority_IS_weight=True, |
|
|
|
|
|
|
|
|
|
discount_factor=0.997, |
|
|
|
nstep=5, |
|
|
|
|
|
burnin_step=2, |
|
|
|
|
|
learn_unroll_len=80, |
|
learn=dict( |
|
update_per_collect=1, |
|
batch_size=64, |
|
learning_rate=0.0001, |
|
|
|
|
|
|
|
|
|
|
|
target_update_theta=0.001, |
|
|
|
value_rescale=True, |
|
ignore_done=False, |
|
), |
|
collect=dict( |
|
|
|
|
|
|
|
|
|
env_num=None, |
|
), |
|
eval=dict( |
|
|
|
|
|
env_num=None, |
|
), |
|
other=dict( |
|
eps=dict( |
|
type='exp', |
|
start=0.95, |
|
end=0.05, |
|
decay=10000, |
|
), |
|
replay_buffer=dict(replay_buffer_size=10000, ), |
|
), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
return 'drqn', ['ding.model.template.q_learning'] |
|
|
|
def _init_learn(self) -> None: |
|
r""" |
|
Overview: |
|
Init the learner model of r2d3Policy |
|
|
|
Arguments: |
|
.. note:: |
|
|
|
The _init_learn method takes the argument from the self._cfg.learn in the config file |
|
|
|
- learning_rate (:obj:`float`): The learning rate fo the optimizer |
|
- gamma (:obj:`float`): The discount factor |
|
- nstep (:obj:`int`): The num of n step return |
|
- value_rescale (:obj:`bool`): Whether to use value rescaled loss in algorithm |
|
- burnin_step (:obj:`int`): The num of step of burnin |
|
""" |
|
self.lambda1 = self._cfg.learn.lambda1 |
|
self.lambda2 = self._cfg.learn.lambda2 |
|
self.lambda3 = self._cfg.learn.lambda3 |
|
self.lambda_one_step_td = self._cfg.learn.lambda_one_step_td |
|
|
|
self.margin_function = self._cfg.learn.margin_function |
|
|
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
self._optimizer = Adam( |
|
self._model.parameters(), lr=self._cfg.learn.learning_rate, weight_decay=self.lambda3, optim_type='adamw' |
|
) |
|
self._gamma = self._cfg.discount_factor |
|
self._nstep = self._cfg.nstep |
|
self._burnin_step = self._cfg.burnin_step |
|
self._value_rescale = self._cfg.learn.value_rescale |
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='momentum', |
|
update_kwargs={'theta': self._cfg.learn.target_update_theta} |
|
) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='hidden_state', |
|
state_num=self._cfg.learn.batch_size, |
|
) |
|
self._learn_model = model_wrap( |
|
self._model, |
|
wrapper_name='hidden_state', |
|
state_num=self._cfg.learn.batch_size, |
|
) |
|
self._learn_model = model_wrap(self._learn_model, wrapper_name='argmax_sample') |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
def _data_preprocess_learn(self, data: List[Dict[str, Any]]) -> dict: |
|
r""" |
|
Overview: |
|
Preprocess the data to fit the required data format for learning |
|
|
|
Arguments: |
|
- data (:obj:`List[Dict[str, Any]]`): the data collected from collect function |
|
|
|
Returns: |
|
- data (:obj:`Dict[str, Any]`): the processed data, including at least \ |
|
['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight'] |
|
- data_info (:obj:`dict`): the data info, such as replay_buffer_idx, replay_unique_id |
|
""" |
|
|
|
data = timestep_collate(data) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
if self._priority_IS_weight: |
|
assert self._priority, "Use IS Weight correction, but Priority is not used." |
|
if self._priority and self._priority_IS_weight: |
|
data['weight'] = data['IS'] |
|
else: |
|
data['weight'] = data.get('weight', None) |
|
|
|
bs = self._burnin_step |
|
|
|
|
|
|
|
ignore_done = self._cfg.learn.ignore_done |
|
if ignore_done: |
|
data['done'] = [None for _ in range(self._sequence_len - bs)] |
|
else: |
|
data['done'] = data['done'][bs:].float() |
|
|
|
|
|
|
|
|
|
|
|
|
|
if 'value_gamma' not in data: |
|
data['value_gamma'] = [None for _ in range(self._sequence_len - bs)] |
|
else: |
|
data['value_gamma'] = data['value_gamma'][bs:] |
|
|
|
if 'weight' not in data: |
|
data['weight'] = [None for _ in range(self._sequence_len - bs)] |
|
else: |
|
data['weight'] = data['weight'] * torch.ones_like(data['done']) |
|
|
|
|
|
data['action'] = data['action'][bs:-self._nstep] |
|
data['reward'] = data['reward'][bs:-self._nstep] |
|
|
|
|
|
|
|
data['burnin_nstep_obs'] = data['obs'][:bs + self._nstep] |
|
|
|
|
|
data['main_obs'] = data['obs'][bs:-self._nstep] |
|
|
|
data['target_obs'] = data['obs'][bs + self._nstep:] |
|
|
|
|
|
data['target_obs_one_step'] = data['obs'][bs + 1:] |
|
if ignore_done: |
|
data['done_one_step'] = [None for _ in range(self._sequence_len - bs)] |
|
else: |
|
data['done_one_step'] = data['done_one_step'][bs:].float() |
|
|
|
return data |
|
|
|
def _forward_learn(self, data: dict) -> Dict[str, Any]: |
|
r""" |
|
Overview: |
|
Forward and backward function of learn mode. |
|
Acquire the data, calculate the loss and optimize learner model. |
|
|
|
Arguments: |
|
- data (:obj:`dict`): Dict type data, including at least \ |
|
['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight'] |
|
|
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Including cur_lr and total_loss |
|
- cur_lr (:obj:`float`): Current learning rate |
|
- total_loss (:obj:`float`): The calculated loss |
|
""" |
|
|
|
data = self._data_preprocess_learn(data) |
|
self._learn_model.train() |
|
self._target_model.train() |
|
|
|
self._learn_model.reset(data_id=None, state=data['prev_state'][0]) |
|
self._target_model.reset(data_id=None, state=data['prev_state'][0]) |
|
|
|
if len(data['burnin_nstep_obs']) != 0: |
|
with torch.no_grad(): |
|
inputs = {'obs': data['burnin_nstep_obs'], 'enable_fast_timestep': True} |
|
burnin_output = self._learn_model.forward( |
|
inputs, |
|
saved_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep, self._burnin_step + 1] |
|
) |
|
burnin_output_target = self._target_model.forward( |
|
inputs, |
|
saved_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep, self._burnin_step + 1] |
|
) |
|
|
|
self._learn_model.reset(data_id=None, state=burnin_output['saved_state'][0]) |
|
inputs = {'obs': data['main_obs'], 'enable_fast_timestep': True} |
|
q_value = self._learn_model.forward(inputs)['logit'] |
|
|
|
|
|
self._learn_model.reset(data_id=None, state=burnin_output['saved_state'][1]) |
|
self._target_model.reset(data_id=None, state=burnin_output_target['saved_state'][1]) |
|
|
|
next_inputs = {'obs': data['target_obs'], 'enable_fast_timestep': True} |
|
with torch.no_grad(): |
|
target_q_value = self._target_model.forward(next_inputs)['logit'] |
|
|
|
target_q_action = self._learn_model.forward(next_inputs)['action'] |
|
|
|
|
|
self._learn_model.reset(data_id=None, state=burnin_output['saved_state'][2]) |
|
self._target_model.reset(data_id=None, state=burnin_output_target['saved_state'][2]) |
|
|
|
next_inputs_one_step = {'obs': data['target_obs_one_step'], 'enable_fast_timestep': True} |
|
with torch.no_grad(): |
|
target_q_value_one_step = self._target_model.forward(next_inputs_one_step)['logit'] |
|
|
|
target_q_action_one_step = self._learn_model.forward(next_inputs_one_step)['action'] |
|
|
|
action, reward, done, weight = data['action'], data['reward'], data['done'], data['weight'] |
|
value_gamma = data['value_gamma'] |
|
done_one_step = data['done_one_step'] |
|
|
|
reward = reward.permute(0, 2, 1).contiguous() |
|
loss = [] |
|
loss_nstep = [] |
|
loss_1step = [] |
|
loss_sl = [] |
|
td_error = [] |
|
for t in range(self._sequence_len - self._burnin_step - self._nstep): |
|
|
|
|
|
td_data = dqfd_nstep_td_data( |
|
q_value[t], |
|
target_q_value[t], |
|
action[t], |
|
target_q_action[t], |
|
reward[t], |
|
done[t], |
|
done_one_step[t], |
|
weight[t], |
|
target_q_value_one_step[t], |
|
target_q_action_one_step[t], |
|
data['is_expert'][t], |
|
) |
|
|
|
if self._value_rescale: |
|
l, e, loss_statistics = dqfd_nstep_td_error_with_rescale( |
|
td_data, |
|
self._gamma, |
|
self.lambda1, |
|
self.lambda2, |
|
self.margin_function, |
|
self.lambda_one_step_td, |
|
self._nstep, |
|
False, |
|
value_gamma=value_gamma[t], |
|
) |
|
loss.append(l) |
|
|
|
td_error.append(e) |
|
|
|
loss_nstep.append(loss_statistics[0]) |
|
loss_1step.append(loss_statistics[1]) |
|
loss_sl.append(loss_statistics[2]) |
|
|
|
else: |
|
l, e, loss_statistics = dqfd_nstep_td_error( |
|
td_data, |
|
self._gamma, |
|
self.lambda1, |
|
self.lambda2, |
|
self.margin_function, |
|
self.lambda_one_step_td, |
|
self._nstep, |
|
False, |
|
value_gamma=value_gamma[t], |
|
) |
|
loss.append(l) |
|
|
|
td_error.append(e) |
|
|
|
loss_nstep.append(loss_statistics[0]) |
|
loss_1step.append(loss_statistics[1]) |
|
loss_sl.append(loss_statistics[2]) |
|
|
|
loss = sum(loss) / (len(loss) + 1e-8) |
|
|
|
loss_nstep = sum(loss_nstep) / (len(loss_nstep) + 1e-8) |
|
loss_1step = sum(loss_1step) / (len(loss_1step) + 1e-8) |
|
loss_sl = sum(loss_sl) / (len(loss_sl) + 1e-8) |
|
|
|
|
|
td_error_per_sample = 0.9 * torch.max( |
|
torch.stack(td_error), dim=0 |
|
)[0] + (1 - 0.9) * (torch.sum(torch.stack(td_error), dim=0) / (len(td_error) + 1e-8)) |
|
|
|
|
|
|
|
|
|
self._optimizer.zero_grad() |
|
loss.backward() |
|
self._optimizer.step() |
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
|
|
|
|
batch_range = torch.arange(action[0].shape[0]) |
|
q_s_a_t0 = q_value[0][batch_range, action[0]] |
|
target_q_s_a_t0 = target_q_value[0][batch_range, target_q_action[0]] |
|
|
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
'total_loss': loss.item(), |
|
|
|
'nstep_loss': loss_nstep.item(), |
|
'1step_loss': loss_1step.item(), |
|
'sl_loss': loss_sl.item(), |
|
'priority': td_error_per_sample.abs().tolist(), |
|
|
|
'q_s_taken-a_t0': q_s_a_t0.mean().item(), |
|
'target_q_s_max-a_t0': target_q_s_a_t0.mean().item(), |
|
'q_s_a-mean_t0': q_value[0].mean().item(), |
|
} |
|
|
|
def _reset_learn(self, data_id: Optional[List[int]] = None) -> None: |
|
self._learn_model.reset(data_id=data_id) |
|
|
|
def _state_dict_learn(self) -> Dict[str, Any]: |
|
return { |
|
'model': self._learn_model.state_dict(), |
|
'target_model': self._target_model.state_dict(), |
|
'optimizer': self._optimizer.state_dict(), |
|
} |
|
|
|
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: |
|
self._learn_model.load_state_dict(state_dict['model']) |
|
self._target_model.load_state_dict(state_dict['target_model']) |
|
self._optimizer.load_state_dict(state_dict['optimizer']) |
|
|
|
def _init_collect(self) -> None: |
|
r""" |
|
Overview: |
|
Collect mode init method. Called by ``self.__init__``. |
|
Init traj and unroll length, collect model. |
|
""" |
|
assert 'unroll_len' not in self._cfg.collect, "r2d3 use default unroll_len" |
|
self._nstep = self._cfg.nstep |
|
self._burnin_step = self._cfg.burnin_step |
|
self._gamma = self._cfg.discount_factor |
|
self._sequence_len = self._cfg.learn_unroll_len + self._cfg.burnin_step |
|
self._unroll_len = self._sequence_len |
|
|
|
self._collect_model = model_wrap( |
|
self._model, wrapper_name='hidden_state', state_num=self._cfg.collect.env_num, save_prev_state=True |
|
) |
|
self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample') |
|
self._collect_model.reset() |
|
|
|
def _forward_collect(self, data: dict, eps: float) -> dict: |
|
r""" |
|
Overview: |
|
Collect output according to eps_greedy plugin |
|
|
|
Arguments: |
|
- data (:obj:`dict`): Dict type data, including at least ['obs']. |
|
|
|
Returns: |
|
- data (:obj:`dict`): The collected data |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
data = {'obs': data} |
|
self._collect_model.eval() |
|
with torch.no_grad(): |
|
|
|
|
|
output = self._collect_model.forward(data, data_id=data_id, eps=eps, inference=True) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _reset_collect(self, data_id: Optional[List[int]] = None) -> None: |
|
self._collect_model.reset(data_id=data_id) |
|
|
|
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict: |
|
r""" |
|
Overview: |
|
Generate dict type transition data from inputs. |
|
Arguments: |
|
- obs (:obj:`Any`): Env observation |
|
- model_output (:obj:`dict`): Output of collect model, including at least ['action', 'prev_state'] |
|
- timestep (:obj:`namedtuple`): Output after env step, including at least ['reward', 'done'] \ |
|
(here 'obs' indicates obs after env step). |
|
Returns: |
|
- transition (:obj:`dict`): Dict type transition data. |
|
""" |
|
transition = { |
|
'obs': obs, |
|
'action': model_output['action'], |
|
'prev_state': model_output['prev_state'], |
|
'reward': timestep.reward, |
|
'done': timestep.done, |
|
} |
|
return transition |
|
|
|
def _get_train_sample(self, data: list) -> Union[None, List[Any]]: |
|
r""" |
|
Overview: |
|
Get the trajectory and the n step return data, then sample from the n_step return data |
|
|
|
Arguments: |
|
- data (:obj:`list`): The trajectory's cache |
|
|
|
Returns: |
|
- samples (:obj:`dict`): The training samples generated |
|
""" |
|
from copy import deepcopy |
|
data_one_step = deepcopy(get_nstep_return_data(data, 1, gamma=self._gamma)) |
|
data = get_nstep_return_data(data, self._nstep, gamma=self._gamma) |
|
for i in range(len(data)): |
|
|
|
|
|
data[i]['done_one_step'] = data_one_step[i]['done'] |
|
return get_train_sample(data, self._sequence_len) |
|
|
|
def _init_eval(self) -> None: |
|
r""" |
|
Overview: |
|
Evaluate mode init method. Called by ``self.__init__``. |
|
Init eval model with argmax strategy. |
|
""" |
|
self._eval_model = model_wrap(self._model, wrapper_name='hidden_state', state_num=self._cfg.eval.env_num) |
|
self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample') |
|
self._eval_model.reset() |
|
|
|
def _forward_eval(self, data: dict) -> dict: |
|
r""" |
|
Overview: |
|
Forward function of collect mode, similar to ``self._forward_collect``. |
|
|
|
Arguments: |
|
- data (:obj:`dict`): Dict type data, including at least ['obs']. |
|
|
|
Returns: |
|
- output (:obj:`dict`): Dict type data, including at least inferred action according to input obs. |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
data = {'obs': data} |
|
self._eval_model.eval() |
|
with torch.no_grad(): |
|
output = self._eval_model.forward(data, data_id=data_id, inference=True) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _reset_eval(self, data_id: Optional[List[int]] = None) -> None: |
|
self._eval_model.reset(data_id=data_id) |
|
|
|
def _monitor_vars_learn(self) -> List[str]: |
|
return super()._monitor_vars_learn() + [ |
|
'total_loss', 'nstep_loss', '1step_loss', 'sl_loss', 'priority', 'q_s_taken-a_t0', 'target_q_s_max-a_t0', |
|
'q_s_a-mean_t0' |
|
] |
|
|