gomoku / DI-engine /ding /reward_model /icm_reward_model.py
zjowowen's picture
init space
079c32c
from typing import Union, Tuple, List, Dict
from easydict import EasyDict
import random
import torch
import torch.nn as nn
import torch.optim as optim
from ding.utils import SequenceType, REWARD_MODEL_REGISTRY
from ding.model import FCEncoder, ConvEncoder
from ding.torch_utils import one_hot
from .base_reward_model import BaseRewardModel
def collect_states(iterator: list) -> Tuple[list, list, list]:
states = []
next_states = []
actions = []
for item in iterator:
state = item['obs']
next_state = item['next_obs']
action = item['action']
states.append(state)
next_states.append(next_state)
actions.append(action)
return states, next_states, actions
class ICMNetwork(nn.Module):
"""
Intrinsic Curiosity Model (ICM Module)
Implementation of:
[1] Curiosity-driven Exploration by Self-supervised Prediction
Pathak, Agrawal, Efros, and Darrell - UC Berkeley - ICML 2017.
https://arxiv.org/pdf/1705.05363.pdf
[2] Code implementation reference:
https://github.com/pathak22/noreward-rl
https://github.com/jcwleo/curiosity-driven-exploration-pytorch
1) Embedding observations into a latent space
2) Predicting the action logit given two consecutive embedded observations
3) Predicting the next embedded obs, given the embeded former observation and action
"""
def __init__(self, obs_shape: Union[int, SequenceType], hidden_size_list: SequenceType, action_shape: int) -> None:
super(ICMNetwork, self).__init__()
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.feature = FCEncoder(obs_shape, hidden_size_list)
elif len(obs_shape) == 3:
self.feature = ConvEncoder(obs_shape, hidden_size_list)
else:
raise KeyError(
"not support obs_shape for pre-defined encoder: {}, please customize your own ICM model".
format(obs_shape)
)
self.action_shape = action_shape
feature_output = hidden_size_list[-1]
self.inverse_net = nn.Sequential(nn.Linear(feature_output * 2, 512), nn.ReLU(), nn.Linear(512, action_shape))
self.residual = nn.ModuleList(
[
nn.Sequential(
nn.Linear(action_shape + 512, 512),
nn.LeakyReLU(),
nn.Linear(512, 512),
) for _ in range(8)
]
)
self.forward_net_1 = nn.Sequential(nn.Linear(action_shape + feature_output, 512), nn.LeakyReLU())
self.forward_net_2 = nn.Linear(action_shape + 512, feature_output)
def forward(self, state: torch.Tensor, next_state: torch.Tensor,
action_long: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
r"""
Overview:
Use observation, next_observation and action to genearte ICM module
Parameter updates with ICMNetwork forward setup.
Arguments:
- state (:obj:`torch.Tensor`):
The current state batch
- next_state (:obj:`torch.Tensor`):
The next state batch
- action_long (:obj:`torch.Tensor`):
The action batch
Returns:
- real_next_state_feature (:obj:`torch.Tensor`):
Run with the encoder. Return the real next_state's embedded feature.
- pred_next_state_feature (:obj:`torch.Tensor`):
Run with the encoder and residual network. Return the predicted next_state's embedded feature.
- pred_action_logit (:obj:`torch.Tensor`):
Run with the encoder. Return the predicted action logit.
Shapes:
- state (:obj:`torch.Tensor`): :math:`(B, N)`, where B is the batch size and N is ''obs_shape''
- next_state (:obj:`torch.Tensor`): :math:`(B, N)`, where B is the batch size and N is ''obs_shape''
- action_long (:obj:`torch.Tensor`): :math:`(B)`, where B is the batch size''
- real_next_state_feature (:obj:`torch.Tensor`): :math:`(B, M)`, where B is the batch size
and M is embedded feature size
- pred_next_state_feature (:obj:`torch.Tensor`): :math:`(B, M)`, where B is the batch size
and M is embedded feature size
- pred_action_logit (:obj:`torch.Tensor`): :math:`(B, A)`, where B is the batch size
and A is the ''action_shape''
"""
action = one_hot(action_long, num=self.action_shape)
encode_state = self.feature(state)
encode_next_state = self.feature(next_state)
# get pred action logit
concat_state = torch.cat((encode_state, encode_next_state), 1)
pred_action_logit = self.inverse_net(concat_state)
# ---------------------
# get pred next state
pred_next_state_feature_orig = torch.cat((encode_state, action), 1)
pred_next_state_feature_orig = self.forward_net_1(pred_next_state_feature_orig)
# residual
for i in range(4):
pred_next_state_feature = self.residual[i * 2](torch.cat((pred_next_state_feature_orig, action), 1))
pred_next_state_feature_orig = self.residual[i * 2 + 1](
torch.cat((pred_next_state_feature, action), 1)
) + pred_next_state_feature_orig
pred_next_state_feature = self.forward_net_2(torch.cat((pred_next_state_feature_orig, action), 1))
real_next_state_feature = encode_next_state
return real_next_state_feature, pred_next_state_feature, pred_action_logit
@REWARD_MODEL_REGISTRY.register('icm')
class ICMRewardModel(BaseRewardModel):
"""
Overview:
The ICM reward model class (https://arxiv.org/pdf/1705.05363.pdf)
Interface:
``estimate``, ``train``, ``collect_data``, ``clear_data``, \
``__init__``, ``_train``, ``load_state_dict``, ``state_dict``
Config:
== ==================== ======== ============= ==================================== =======================
ID Symbol Type Default Value Description Other(Shape)
== ==================== ======== ============= ==================================== =======================
1 ``type`` str icm | Reward model register name, |
| refer to registry |
| ``REWARD_MODEL_REGISTRY`` |
2 | ``intrinsic_`` str add | the intrinsic reward type | including add, new
| ``reward_type`` | | , or assign
3 | ``learning_rate`` float 0.001 | The step size of gradient descent |
4 | ``obs_shape`` Tuple( 6 | the observation shape |
[int,
list])
5 | ``action_shape`` int 7 | the action space shape |
6 | ``batch_size`` int 64 | Training batch size |
7 | ``hidden`` list [64, 64, | the MLP layer shape |
| ``_size_list`` (int) 128] | |
8 | ``update_per_`` int 100 | Number of updates per collect |
| ``collect`` | |
9 | ``reverse_scale`` float 1 | the importance weight of the |
| forward and reverse loss |
10 | ``intrinsic_`` float 0.003 | the weight of intrinsic reward | r = w*r_i + r_e
``reward_weight``
11 | ``extrinsic_`` bool True | Whether to normlize
``reward_norm`` | extrinsic reward
12 | ``extrinsic_`` int 1 | the upper bound of the reward
``reward_norm_max`` | normalization
13 | ``clear_buffer`` int 1 | clear buffer per fixed iters | make sure replay
``_per_iters`` | buffer's data count
| isn't too few.
| (code work in entry)
== ==================== ======== ============= ==================================== =======================
"""
config = dict(
# (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``.
type='icm',
# (str) The intrinsic reward type, including add, new, or assign.
intrinsic_reward_type='add',
# (float) The step size of gradient descent.
learning_rate=1e-3,
# (Tuple[int, list]), The observation shape.
obs_shape=6,
# (int) The action shape, support discrete action only in this version.
action_shape=7,
# (float) Batch size.
batch_size=64,
# (list) The MLP layer shape.
hidden_size_list=[64, 64, 128],
# (int) How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
update_per_collect=100,
# (float) The importance weight of the forward and reverse loss.
reverse_scale=1,
# (float) The weight of intrinsic reward.
# r = intrinsic_reward_weight * r_i + r_e.
intrinsic_reward_weight=0.003, # 1/300
# (bool) Whether to normlize extrinsic reward.
# Normalize the reward to [0, extrinsic_reward_norm_max].
extrinsic_reward_norm=True,
# (int) The upper bound of the reward normalization.
extrinsic_reward_norm_max=1,
# (int) Clear buffer per fixed iters.
clear_buffer_per_iters=100,
)
def __init__(self, config: EasyDict, device: str, tb_logger: 'SummaryWriter') -> None: # noqa
super(ICMRewardModel, self).__init__()
self.cfg = config
assert device == "cpu" or device.startswith("cuda")
self.device = device
self.tb_logger = tb_logger
self.reward_model = ICMNetwork(config.obs_shape, config.hidden_size_list, config.action_shape)
self.reward_model.to(self.device)
self.intrinsic_reward_type = config.intrinsic_reward_type
assert self.intrinsic_reward_type in ['add', 'new', 'assign']
self.train_data = []
self.train_states = []
self.train_next_states = []
self.train_actions = []
self.opt = optim.Adam(self.reward_model.parameters(), config.learning_rate)
self.ce = nn.CrossEntropyLoss(reduction="mean")
self.forward_mse = nn.MSELoss(reduction='none')
self.reverse_scale = config.reverse_scale
self.res = nn.Softmax(dim=-1)
self.estimate_cnt_icm = 0
self.train_cnt_icm = 0
def _train(self) -> None:
self.train_cnt_icm += 1
train_data_list = [i for i in range(0, len(self.train_states))]
train_data_index = random.sample(train_data_list, self.cfg.batch_size)
data_states: list = [self.train_states[i] for i in train_data_index]
data_states: torch.Tensor = torch.stack(data_states).to(self.device)
data_next_states: list = [self.train_next_states[i] for i in train_data_index]
data_next_states: torch.Tensor = torch.stack(data_next_states).to(self.device)
data_actions: list = [self.train_actions[i] for i in train_data_index]
data_actions: torch.Tensor = torch.cat(data_actions).to(self.device)
real_next_state_feature, pred_next_state_feature, pred_action_logit = self.reward_model(
data_states, data_next_states, data_actions
)
inverse_loss = self.ce(pred_action_logit, data_actions.long())
forward_loss = self.forward_mse(pred_next_state_feature, real_next_state_feature.detach()).mean()
self.tb_logger.add_scalar('icm_reward/forward_loss', forward_loss, self.train_cnt_icm)
self.tb_logger.add_scalar('icm_reward/inverse_loss', inverse_loss, self.train_cnt_icm)
action = torch.argmax(self.res(pred_action_logit), -1)
accuracy = torch.sum(action == data_actions.squeeze(-1)).item() / data_actions.shape[0]
self.tb_logger.add_scalar('icm_reward/action_accuracy', accuracy, self.train_cnt_icm)
loss = self.reverse_scale * inverse_loss + forward_loss
self.tb_logger.add_scalar('icm_reward/total_loss', loss, self.train_cnt_icm)
loss = self.reverse_scale * inverse_loss + forward_loss
self.opt.zero_grad()
loss.backward()
self.opt.step()
def train(self) -> None:
for _ in range(self.cfg.update_per_collect):
self._train()
def estimate(self, data: list) -> List[Dict]:
# NOTE: deepcopy reward part of data is very important,
# otherwise the reward of data in the replay buffer will be incorrectly modified.
train_data_augmented = self.reward_deepcopy(data)
states, next_states, actions = collect_states(train_data_augmented)
states = torch.stack(states).to(self.device)
next_states = torch.stack(next_states).to(self.device)
actions = torch.cat(actions).to(self.device)
with torch.no_grad():
real_next_state_feature, pred_next_state_feature, _ = self.reward_model(states, next_states, actions)
raw_icm_reward = self.forward_mse(real_next_state_feature, pred_next_state_feature).mean(dim=1)
self.estimate_cnt_icm += 1
self.tb_logger.add_scalar('icm_reward/raw_icm_reward_max', raw_icm_reward.max(), self.estimate_cnt_icm)
self.tb_logger.add_scalar('icm_reward/raw_icm_reward_mean', raw_icm_reward.mean(), self.estimate_cnt_icm)
self.tb_logger.add_scalar('icm_reward/raw_icm_reward_min', raw_icm_reward.min(), self.estimate_cnt_icm)
self.tb_logger.add_scalar('icm_reward/raw_icm_reward_std', raw_icm_reward.std(), self.estimate_cnt_icm)
icm_reward = (raw_icm_reward - raw_icm_reward.min()) / (raw_icm_reward.max() - raw_icm_reward.min() + 1e-8)
self.tb_logger.add_scalar('icm_reward/icm_reward_max', icm_reward.max(), self.estimate_cnt_icm)
self.tb_logger.add_scalar('icm_reward/icm_reward_mean', icm_reward.mean(), self.estimate_cnt_icm)
self.tb_logger.add_scalar('icm_reward/icm_reward_min', icm_reward.min(), self.estimate_cnt_icm)
self.tb_logger.add_scalar('icm_reward/icm_reward_std', icm_reward.std(), self.estimate_cnt_icm)
icm_reward = (raw_icm_reward - raw_icm_reward.min()) / (raw_icm_reward.max() - raw_icm_reward.min() + 1e-8)
icm_reward = icm_reward.to(self.device)
for item, icm_rew in zip(train_data_augmented, icm_reward):
if self.intrinsic_reward_type == 'add':
if self.cfg.extrinsic_reward_norm:
item['reward'] = item[
'reward'] / self.cfg.extrinsic_reward_norm_max + icm_rew * self.cfg.intrinsic_reward_weight
else:
item['reward'] = item['reward'] + icm_rew * self.cfg.intrinsic_reward_weight
elif self.intrinsic_reward_type == 'new':
item['intrinsic_reward'] = icm_rew
if self.cfg.extrinsic_reward_norm:
item['reward'] = item['reward'] / self.cfg.extrinsic_reward_norm_max
elif self.intrinsic_reward_type == 'assign':
item['reward'] = icm_rew
return train_data_augmented
def collect_data(self, data: list) -> None:
self.train_data.extend(collect_states(data))
states, next_states, actions = collect_states(data)
self.train_states.extend(states)
self.train_next_states.extend(next_states)
self.train_actions.extend(actions)
def clear_data(self) -> None:
self.train_data.clear()
self.train_states.clear()
self.train_next_states.clear()
self.train_actions.clear()
def state_dict(self) -> Dict:
return self.reward_model.state_dict()
def load_state_dict(self, _state_dict: Dict) -> None:
self.reward_model.load_state_dict(_state_dict)