|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ding.torch_utils import Swish |
|
|
|
|
|
class StandardScaler(nn.Module): |
|
|
|
def __init__(self, input_size: int): |
|
super(StandardScaler, self).__init__() |
|
self.register_buffer('std', torch.ones(1, input_size)) |
|
self.register_buffer('mu', torch.zeros(1, input_size)) |
|
|
|
def fit(self, data: torch.Tensor): |
|
std, mu = torch.std_mean(data, dim=0, keepdim=True) |
|
std[std < 1e-12] = 1 |
|
self.std.data.mul_(0.0).add_(std) |
|
self.mu.data.mul_(0.0).add_(mu) |
|
|
|
def transform(self, data: torch.Tensor): |
|
return (data - self.mu) / self.std |
|
|
|
def inverse_transform(self, data: torch.Tensor): |
|
return self.std * data + self.mu |
|
|
|
|
|
class EnsembleFC(nn.Module): |
|
__constants__ = ['in_features', 'out_features'] |
|
in_features: int |
|
out_features: int |
|
ensemble_size: int |
|
weight: torch.Tensor |
|
|
|
def __init__(self, in_features: int, out_features: int, ensemble_size: int, weight_decay: float = 0.) -> None: |
|
super(EnsembleFC, self).__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.ensemble_size = ensemble_size |
|
self.weight = nn.Parameter(torch.zeros(ensemble_size, in_features, out_features)) |
|
self.weight_decay = weight_decay |
|
self.bias = nn.Parameter(torch.zeros(ensemble_size, 1, out_features)) |
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
assert input.shape[0] == self.ensemble_size and len(input.shape) == 3 |
|
return torch.bmm(input, self.weight) + self.bias |
|
|
|
def extra_repr(self) -> str: |
|
return 'in_features={}, out_features={}, ensemble_size={}, weight_decay={}'.format( |
|
self.in_features, self.out_features, self.ensemble_size, self.weight_decay |
|
) |
|
|
|
|
|
class EnsembleModel(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
state_size, |
|
action_size, |
|
reward_size, |
|
ensemble_size, |
|
hidden_size=200, |
|
learning_rate=1e-3, |
|
use_decay=False |
|
): |
|
super(EnsembleModel, self).__init__() |
|
|
|
self.use_decay = use_decay |
|
self.hidden_size = hidden_size |
|
self.output_dim = state_size + reward_size |
|
|
|
self.nn1 = EnsembleFC(state_size + action_size, hidden_size, ensemble_size, weight_decay=0.000025) |
|
self.nn2 = EnsembleFC(hidden_size, hidden_size, ensemble_size, weight_decay=0.00005) |
|
self.nn3 = EnsembleFC(hidden_size, hidden_size, ensemble_size, weight_decay=0.000075) |
|
self.nn4 = EnsembleFC(hidden_size, hidden_size, ensemble_size, weight_decay=0.000075) |
|
self.nn5 = EnsembleFC(hidden_size, self.output_dim * 2, ensemble_size, weight_decay=0.0001) |
|
self.max_logvar = nn.Parameter(torch.ones(1, self.output_dim).float() * 0.5, requires_grad=False) |
|
self.min_logvar = nn.Parameter(torch.ones(1, self.output_dim).float() * -10, requires_grad=False) |
|
self.swish = Swish() |
|
|
|
def init_weights(m: nn.Module): |
|
|
|
def truncated_normal_init(t, mean: float = 0.0, std: float = 0.01): |
|
torch.nn.init.normal_(t, mean=mean, std=std) |
|
while True: |
|
cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) |
|
if not torch.sum(cond): |
|
break |
|
t = torch.where(cond, torch.nn.init.normal_(torch.ones(t.shape), mean=mean, std=std), t) |
|
return t |
|
|
|
if isinstance(m, nn.Linear) or isinstance(m, EnsembleFC): |
|
input_dim = m.in_features |
|
truncated_normal_init(m.weight, std=1 / (2 * np.sqrt(input_dim))) |
|
m.bias.data.fill_(0.0) |
|
|
|
self.apply(init_weights) |
|
|
|
self.optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate) |
|
|
|
def forward(self, x: torch.Tensor, ret_log_var: bool = False): |
|
x = self.swish(self.nn1(x)) |
|
x = self.swish(self.nn2(x)) |
|
x = self.swish(self.nn3(x)) |
|
x = self.swish(self.nn4(x)) |
|
x = self.nn5(x) |
|
|
|
mean, logvar = x.chunk(2, dim=2) |
|
logvar = self.max_logvar - F.softplus(self.max_logvar - logvar) |
|
logvar = self.min_logvar + F.softplus(logvar - self.min_logvar) |
|
|
|
if ret_log_var: |
|
return mean, logvar |
|
else: |
|
return mean, torch.exp(logvar) |
|
|
|
def get_decay_loss(self): |
|
decay_loss = 0. |
|
for m in self.modules(): |
|
if isinstance(m, EnsembleFC): |
|
decay_loss += m.weight_decay * torch.sum(torch.square(m.weight)) / 2. |
|
return decay_loss |
|
|
|
def loss(self, mean: torch.Tensor, logvar: torch.Tensor, labels: torch.Tensor): |
|
""" |
|
mean, logvar: Ensemble_size x N x dim |
|
labels: Ensemble_size x N x dim |
|
""" |
|
assert len(mean.shape) == len(logvar.shape) == len(labels.shape) == 3 |
|
inv_var = torch.exp(-logvar) |
|
|
|
mse_loss_inv = (torch.pow(mean - labels, 2) * inv_var).mean(dim=(1, 2)) |
|
var_loss = logvar.mean(dim=(1, 2)) |
|
with torch.no_grad(): |
|
|
|
mse_loss = torch.pow(mean - labels, 2).mean(dim=(1, 2)) |
|
total_loss = mse_loss_inv.sum() + var_loss.sum() |
|
return total_loss, mse_loss |
|
|
|
def train(self, loss: torch.Tensor): |
|
self.optimizer.zero_grad() |
|
|
|
loss += 0.01 * torch.sum(self.max_logvar) - 0.01 * torch.sum(self.min_logvar) |
|
if self.use_decay: |
|
loss += self.get_decay_loss() |
|
|
|
loss.backward() |
|
|
|
self.optimizer.step() |
|
|