|
import os |
|
import gym |
|
from tensorboardX import SummaryWriter |
|
from easydict import EasyDict |
|
from functools import partial |
|
|
|
from ding.config import compile_config |
|
from ding.worker import BaseLearner, EpisodeSerialCollector, InteractionSerialEvaluator, EpisodeReplayBuffer |
|
from ding.envs import BaseEnvManager, DingEnvWrapper |
|
from ding.policy import DQNPolicy |
|
from ding.model import DQN |
|
from ding.utils import set_pkg_seed |
|
from ding.rl_utils import get_epsilon_greedy_fn |
|
from ding.reward_model import HerRewardModel |
|
from dizoo.bitflip.envs import BitFlipEnv |
|
from dizoo.bitflip.config import bitflip_pure_dqn_config, bitflip_her_dqn_config |
|
|
|
|
|
def main(cfg, seed=0, max_train_iter=int(1e8), max_env_step=int(1e8)): |
|
cfg = compile_config( |
|
cfg, |
|
BaseEnvManager, |
|
DQNPolicy, |
|
BaseLearner, |
|
EpisodeSerialCollector, |
|
InteractionSerialEvaluator, |
|
EpisodeReplayBuffer, |
|
save_cfg=True |
|
) |
|
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num |
|
collector_env = BaseEnvManager( |
|
env_fn=[partial(BitFlipEnv, cfg=cfg.env) for _ in range(collector_env_num)], cfg=cfg.env.manager |
|
) |
|
evaluator_env = BaseEnvManager( |
|
env_fn=[partial(BitFlipEnv, cfg=cfg.env) for _ in range(evaluator_env_num)], cfg=cfg.env.manager |
|
) |
|
|
|
|
|
collector_env.seed(seed) |
|
evaluator_env.seed(seed, dynamic_seed=False) |
|
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) |
|
|
|
|
|
model = DQN(**cfg.policy.model) |
|
policy = DQNPolicy(cfg.policy, model=model) |
|
|
|
|
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) |
|
collector = EpisodeSerialCollector( |
|
cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
evaluator = InteractionSerialEvaluator( |
|
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
replay_buffer = EpisodeReplayBuffer( |
|
cfg.policy.other.replay_buffer, exp_name=cfg.exp_name, instance_name='episode_buffer' |
|
) |
|
|
|
|
|
eps_cfg = cfg.policy.other.eps |
|
epsilon_greedy = get_epsilon_greedy_fn(eps_cfg.start, eps_cfg.end, eps_cfg.decay, eps_cfg.type) |
|
her_cfg = cfg.policy.other.get('her', None) |
|
if her_cfg is not None: |
|
her_model = HerRewardModel(her_cfg, cfg.policy.cuda) |
|
|
|
|
|
while True: |
|
|
|
if evaluator.should_eval(learner.train_iter): |
|
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) |
|
if stop: |
|
break |
|
|
|
eps = epsilon_greedy(collector.envstep) |
|
|
|
new_episode = collector.collect(train_iter=learner.train_iter, policy_kwargs={'eps': eps}) |
|
replay_buffer.push(new_episode, cur_collector_envstep=collector.envstep) |
|
|
|
for i in range(cfg.policy.learn.update_per_collect): |
|
if her_cfg and her_model.episode_size is not None: |
|
sample_size = her_model.episode_size |
|
else: |
|
sample_size = learner.policy.get_attribute('batch_size') |
|
train_episode = replay_buffer.sample(sample_size, learner.train_iter) |
|
if train_episode is None: |
|
break |
|
train_data = [] |
|
if her_cfg is not None: |
|
her_episodes = [] |
|
for e in train_episode: |
|
her_episodes.extend(her_model.estimate(e)) |
|
|
|
for e in her_episodes: |
|
train_data.extend(policy.collect_mode.get_train_sample(e)) |
|
learner.train(train_data, collector.envstep) |
|
if learner.train_iter >= max_train_iter or collector.envstep >= max_env_step: |
|
break |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
main(bitflip_her_dqn_config) |
|
|