|
import copy |
|
import random |
|
import numpy as np |
|
import gym |
|
from typing import Any, Dict, Optional, Union, List |
|
|
|
from ding.envs import BaseEnv, BaseEnvTimestep |
|
from ding.utils import ENV_REGISTRY |
|
from ding.torch_utils import to_ndarray |
|
|
|
|
|
@ENV_REGISTRY.register('bitflip') |
|
class BitFlipEnv(BaseEnv): |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
self._cfg = cfg |
|
self._n_bits = cfg.n_bits |
|
self._state = np.zeros(self._n_bits) |
|
self._goal = np.zeros(self._n_bits) |
|
self._curr_step = 0 |
|
self._maxsize = self._n_bits |
|
self._eval_episode_return = 0 |
|
self._observation_space = gym.spaces.Box(low=0, high=1, shape=(2 * self._n_bits, ), dtype=np.float32) |
|
self._action_space = gym.spaces.Discrete(self._n_bits) |
|
self._reward_space = gym.spaces.Box(low=0.0, high=1.0, shape=(1, ), dtype=np.float32) |
|
|
|
def reset(self) -> np.ndarray: |
|
self._curr_step = 0 |
|
self._eval_episode_return = 0 |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
random_seed = 100 * random.randint(1, 1000) |
|
np.random.seed(self._seed + random_seed) |
|
elif hasattr(self, '_seed'): |
|
np.random.seed(self._seed) |
|
self._state = np.random.randint(0, 2, size=(self._n_bits, )).astype(np.float32) |
|
self._goal = np.random.randint(0, 2, size=(self._n_bits, )).astype(np.float32) |
|
|
|
while (self._state == self._goal).all(): |
|
self._goal = np.random.randint(0, 2, size=(self._n_bits, )).astype(np.float32) |
|
|
|
obs = np.concatenate([self._state, self._goal], axis=0) |
|
return obs |
|
|
|
def close(self) -> None: |
|
pass |
|
|
|
def check_success(self, state: np.ndarray, goal: np.ndarray) -> bool: |
|
return (self._state == self._goal).all() |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
random.seed(self._seed) |
|
|
|
def step(self, action: np.ndarray) -> BaseEnvTimestep: |
|
self._state[action] = 1 - self._state[action] |
|
if self.check_success(self._state, self._goal): |
|
rew = np.array([1]).astype(np.float32) |
|
done = True |
|
else: |
|
rew = np.array([0]).astype(np.float32) |
|
done = False |
|
self._eval_episode_return += float(rew) |
|
if self._curr_step >= self._maxsize - 1: |
|
done = True |
|
info = {} |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
self._curr_step += 1 |
|
obs = np.concatenate([self._state, self._goal], axis=0) |
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def random_action(self) -> np.ndarray: |
|
random_action = self.action_space.sample() |
|
random_action = to_ndarray([random_action], dtype=np.int64) |
|
return random_action |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
return self._reward_space |
|
|
|
def __repr__(self) -> str: |
|
return "DI-engine BitFlip Env({})".format('bitflip') |
|
|