|
from typing import Any, List, Union, Optional |
|
import time |
|
import copy |
|
import gym |
|
import numpy as np |
|
from ding.envs import BaseEnv, BaseEnvTimestep |
|
from ding.torch_utils import to_ndarray, to_list |
|
from ding.utils import ENV_REGISTRY |
|
|
|
import bsuite |
|
from bsuite.utils import gym_wrapper |
|
from bsuite import sweep |
|
|
|
|
|
@ENV_REGISTRY.register('bsuite') |
|
class BSuiteEnv(BaseEnv): |
|
|
|
def __init__(self, cfg: dict) -> None: |
|
self._cfg = cfg |
|
self._init_flag = False |
|
self.env_id = cfg.env_id |
|
self.env_name = self.env_id.split('/')[0] |
|
|
|
def reset(self) -> np.ndarray: |
|
if not self._init_flag: |
|
raw_env = bsuite.load_from_id(bsuite_id=self.env_id) |
|
self._env = gym_wrapper.GymFromDMEnv(raw_env) |
|
self._observation_space = self._env.observation_space |
|
self._action_space = self._env.action_space |
|
self._reward_space = gym.spaces.Box( |
|
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float64 |
|
) |
|
self._init_flag = True |
|
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: |
|
np_seed = 100 * np.random.randint(1, 1000) |
|
self._env.seed(self._seed + np_seed) |
|
elif hasattr(self, '_seed'): |
|
self._env.seed(self._seed) |
|
self._eval_episode_return = 0 |
|
obs = self._env.reset() |
|
if obs.shape[0] == 1: |
|
obs = obs[0] |
|
obs = to_ndarray(obs).astype(np.float32) |
|
return obs |
|
|
|
def close(self) -> None: |
|
if self._init_flag: |
|
self._env.close() |
|
self._init_flag = False |
|
|
|
def seed(self, seed: int, dynamic_seed: bool = True) -> None: |
|
self._seed = seed |
|
self._dynamic_seed = dynamic_seed |
|
np.random.seed(self._seed) |
|
|
|
def step(self, action: np.ndarray) -> BaseEnvTimestep: |
|
assert isinstance(action, np.ndarray), type(action) |
|
if action.shape[0] == 1: |
|
action = action[0] |
|
obs, rew, done, info = self._env.step(action) |
|
self._eval_episode_return += rew |
|
if done: |
|
info['eval_episode_return'] = self._eval_episode_return |
|
if obs.shape[0] == 1: |
|
obs = obs[0] |
|
obs = to_ndarray(obs) |
|
rew = to_ndarray([rew]) |
|
return BaseEnvTimestep(obs, rew, done, info) |
|
|
|
def config_info(self) -> dict: |
|
config_info = sweep.SETTINGS[self.env_id] |
|
config_info['num_episodes'] = self._env.bsuite_num_episodes |
|
return config_info |
|
|
|
def random_action(self) -> np.ndarray: |
|
random_action = self.action_space.sample() |
|
random_action = to_ndarray([random_action], dtype=np.int64) |
|
return random_action |
|
|
|
@property |
|
def observation_space(self) -> gym.spaces.Space: |
|
return self._observation_space |
|
|
|
@property |
|
def action_space(self) -> gym.spaces.Space: |
|
return self._action_space |
|
|
|
@property |
|
def reward_space(self) -> gym.spaces.Space: |
|
return self._reward_space |
|
|
|
def __repr__(self) -> str: |
|
return "DI-engine BSuite Env({})".format(self.env_id) |
|
|
|
@staticmethod |
|
def create_collector_env_cfg(cfg: dict) -> List[dict]: |
|
collector_env_num = cfg.pop('collector_env_num') |
|
cfg = copy.deepcopy(cfg) |
|
cfg.is_train = True |
|
return [cfg for _ in range(collector_env_num)] |
|
|
|
@staticmethod |
|
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: |
|
evaluator_env_num = cfg.pop('evaluator_env_num') |
|
cfg = copy.deepcopy(cfg) |
|
cfg.is_train = False |
|
return [cfg for _ in range(evaluator_env_num)] |
|
|