|
import torch |
|
from copy import deepcopy |
|
|
|
from ding.entry import serial_pipeline_offline, collect_demo_data, eval, serial_pipeline |
|
|
|
|
|
def train_cql(args): |
|
from dizoo.classic_control.cartpole.config.cartpole_cql_config import main_config, create_config |
|
main_config.exp_name = 'cartpole_cql' |
|
main_config.policy.collect.data_path = './cartpole/expert_demos.hdf5' |
|
main_config.policy.collect.data_type = 'hdf5' |
|
config = deepcopy([main_config, create_config]) |
|
serial_pipeline_offline(config, seed=args.seed) |
|
|
|
|
|
def eval_ckpt(args): |
|
from dizoo.classic_control.cartpole.config.cartpole_qrdqn_config import main_config, create_config |
|
main_config, create_config = deepcopy(main_config), deepcopy(create_config) |
|
main_config.exp_name = 'cartpole' |
|
config = deepcopy([main_config, create_config]) |
|
eval(config, seed=args.seed, load_path='./cartpole/ckpt/ckpt_best.pth.tar') |
|
|
|
|
|
def generate(args): |
|
from dizoo.classic_control.cartpole.config.cartpole_qrdqn_generation_data_config import main_config, create_config |
|
main_config.exp_name = 'cartpole' |
|
main_config.policy.collect.save_path = './cartpole/expert.pkl' |
|
main_config.policy.collect.data_type = 'hdf5' |
|
config = deepcopy([main_config, create_config]) |
|
state_dict = torch.load('./cartpole/ckpt/ckpt_best.pth.tar', map_location='cpu') |
|
collect_demo_data( |
|
config, |
|
collect_count=10000, |
|
seed=args.seed, |
|
expert_data_path=main_config.policy.collect.save_path, |
|
state_dict=state_dict |
|
) |
|
|
|
|
|
def train_expert(args): |
|
from dizoo.classic_control.cartpole.config.cartpole_qrdqn_config import main_config, create_config |
|
main_config, create_config = deepcopy(main_config), deepcopy(create_config) |
|
main_config.exp_name = 'cartpole' |
|
config = deepcopy([main_config, create_config]) |
|
serial_pipeline(config, seed=args.seed) |
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--seed', '-s', type=int, default=10) |
|
args = parser.parse_args() |
|
|
|
train_expert(args) |
|
eval_ckpt(args) |
|
generate(args) |
|
train_cql(args) |
|
|